Skip to main content
Log in

Synthesis and characterization of Ag/Cu/HAP with platelet morphology

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

As a useful starting material in coating technology and preparation of HAP/polymers composites the platelet Ag/Cu/HAP was prepared using the solid solution of HAP reacting with the mix-solution of silver and copper nitrate. Its composition, microstructure and properties were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and anti-bacterial or bacteriostatic tests. The results demonstrate that the prepared Ag/Cu/HAP crystal is mainly comprised of HAP phase with little whitelockite and silver phosphate, stable up to 600°C and takes a platelet shape. At 750°C, it is partially changed into whitelockite, calcium copper phosphate, silver oxide and silver phosphate. The platelet Ag/Cu/HAP crystal has a preferential orientation of a-axis below 600°C, above which the growth in a-axis is greatly inhibited. The Ag/Cu/HAP has good crystallinity at 600°C and is the most effective powder in resisting bacteria among the HAP powders investigated. The platelet Ag/Cu/HAP crystal can be good starting materials to make antibacterial polymers/HAP composites and HAP coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.E. Fleming, C.N. Cornell, G.F. Muschler, Orthop. Clint. North. Am. 31, 357–374 (2000)

    Article  Google Scholar 

  2. S.N. Khan, Entomic, J.M. Lane, Orthop. Clin. North. Am. 31, 389–398 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. C.M. Court-Brown, in Management of Open Fractures, ed. by Dunitz Martin (United Kingdom, 1996)

  4. R.D. Inman, K.V. Gallegos, B.D. Brause, P.B. Redecha, C.L. Christian, Am. J. Med. 77, 47–53 (1984)

    Article  PubMed  CAS  Google Scholar 

  5. P.J. Sanderson, J. Hosp. Infect.18(Suppl A), 367–375 (1991)

    Article  PubMed  Google Scholar 

  6. J.M. Schierholz, J. Beuth, J. Hosp. Infect. 49, 87–93 (2001)

    Article  PubMed  CAS  Google Scholar 

  7. B. Sugarman, E.J. Young, Infect. Dis. Clin. North. Am. 31, 187–198 (1989)

    Google Scholar 

  8. M. Bellantone, N.J. Coleman, L.L. Hench, J. Biomed. Mater. Res. 51, 484–490 (2000)

    Article  PubMed  CAS  Google Scholar 

  9. A.G. Gristina, Science. 237, 1588–1595 (1987)

    Article  PubMed  ADS  CAS  Google Scholar 

  10. J.J. Blaker, S.N. Nazhat, A.R. Boccaccini, Biomaterials. 25(7–8), 1319–1329 (2004)

    Article  PubMed  CAS  Google Scholar 

  11. R.J. Chung, M.F. Hsieh, C.W. Huang, L.H. Perng, H.W. Wen, T.S. Chin, J. Biomed. Mater. Res—Part B: Appl. Biomater. 76(1), 169–178 (2006)

    Article  CAS  Google Scholar 

  12. R.J. Chung, M.F. Hsieh, K.C. Huang, L.H. Perng, F.I. Chou, T.S. Chin, J. Sol–Gel. Sci. Technol. 33(2), 229–239 (2005)

    Article  CAS  Google Scholar 

  13. K.S. Oh, K.J. Kim, Y.K. Jeong, Y.H. Choa, Key Eng. Mater. 240–242, 583–586 (2003)

    Google Scholar 

  14. J.D. Li, Y.B. Li, Y. Zuo, G.Y. Lu, W.H. Yang, L.R. Mo, J. Funct. Mater. 37(4), 635–638 (2006) (in Chinese)

    CAS  Google Scholar 

  15. B. Sutter, D.W. Ming, A. Clearfield, L.R. Hossner, J. Soil. Sci. Soc. Am. 67(6), 1935–1942 (2003)

    Article  CAS  Google Scholar 

  16. T.N. Kim, G.L. Feng, J.O. Kim, J. Wu, H. Wang, G.C. Chen, F.Z. Cui, J. Mater. Sci: Mater. Med. 9(3), 129–134 (1998)

    Article  Google Scholar 

  17. G.L. Miessler, D.A. Tarr (eds.), Inorganic Chemistry (Pearson Education, Inc, Upper Saddle River, New Jersey, 2004), pp. 337–376

    Google Scholar 

  18. B. Chen, X.H. Peng, X.Y. Wu, Key Eng. Mater. 334–335(II), 1129–1132 (2007)

    Article  Google Scholar 

  19. B. Chen, X.Y. Wu, X.H. Peng, Key Eng. Mater. 330–332(II), 785–788 (2007)

    Article  Google Scholar 

  20. B.Y. Chen, C.H. Liang, Ceram. Int. 33(4), 701–703 (2007)

    Article  CAS  Google Scholar 

  21. K. Loku, S. Yoshimura, H. Fujimori, S. Goto, M. Yoshimura, Solid State Ionics. 151(1–4), 147–150 (2002)

    Google Scholar 

  22. A.C. Lawson, J.T. Czernuszka, Mater. Res. Soc. Symposium-Proceedings. 550, 273–278 (1999)

    CAS  Google Scholar 

  23. J.X. Zhang, M. Maeda, N. Kotobuki, M. Hirose, H. Ohqushi, D.L. Jiang, M. Lwasa, Mater. Chem. Phys. 99(2–3), 398–404 (2006)

    Article  CAS  Google Scholar 

  24. K. Yamauchi, T. Goda, N. Takeuchi, H. Einaqa, T. Tanabe, Biomaterials. 25(24), 5481–5489 (2004)

    Article  PubMed  CAS  Google Scholar 

  25. G.D. Zhou, Inorganic Chemistry Series. Science Press, Beijing: China 30(11), 296–300 (1982). R.D. Shannon, Acta. Cryst. A32, 1976:751

  26. J.C. Elliott, Structure and chemistry of the apatites and other calcium orthophosphates, in Studies in Inorganic Chemistry, ed. by J.C. Elliott (Elsevier, Amsterdam, 1994), pp. 148–154

    Google Scholar 

  27. D.K. Pattanayak, R.C. Rajalaxmi Dash, B.T. Prasad, T.R. Rao, Rama Mohan, Mater. Sci. Eng. C. 27, 684–690 (2007)

    Article  CAS  Google Scholar 

  28. M.R. Saeri, A. Afshar, M. Ghorbani, N. Ehsani, C.C. Sorrell, Mater. Lett. 57, 4064–4069 (2003)

    Article  CAS  Google Scholar 

  29. A. Rapacz-Kmita, C. Paluszkiewicz, A. S′ lo′sarczyk, Z. Paszkiewicz, J. Mol. Struct. 744–747, 653–656 (2005)

    Article  CAS  Google Scholar 

  30. C. Kothapalli, M. Wei, A. Vasiliev, M.T. Shaw, Acta. Mater. 52, 5655–5663 (2004)

    Article  CAS  Google Scholar 

  31. S. Meejoo, W. Maneeprakorn, P. Winotai, Thermochimica. Acta. 447, 115–120 (2006)

    Article  CAS  Google Scholar 

  32. Z.W. Yang, Y.S. Jiang, Y.J. Wang, L.Y. Ma, F.F. Li, Mater. Lett.58, 3586–3590 (2004)

    Article  CAS  Google Scholar 

  33. N. Kanzaki, K. Onuma, G. Treboux, S. Tsutsumi, A. Ito, J. Phys. Chem. B. 104(17), 4189–4194 (2000)

    Article  CAS  Google Scholar 

  34. W. Sheng, Y.F. Gu, C.S. Liu, X.M. Sun, L.M. Hu, Gui suan yan tong bao, 1:45–52 (1996) T. Kawasaki et al., J. Chromatography. 515 (1990) 125

  35. W. Sheng, Y.F. Gu, C.S. Liu, X.M. Sun, L.M. Hu, Gui. Suan. Yan. Tong. Bao. 1, 45–52 (1996)

    Google Scholar 

  36. K.S. Oh, K.J. Kim, Y.K. Jeong, E.K. Park, S.Y. Kim, J.H. Kwon, H.M. Ryoo, H.I. Shin, Key Eng. Mater. 264–268, 2107–2110 (2004)

    Google Scholar 

  37. W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, Biomaterials. 27, 5512–5517 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. E. Verne, S. Di Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Biomaterials. 26, 5111–5119 (2005)

    Article  PubMed  CAS  Google Scholar 

  39. M. Catauro, M.G. Raucci, F. De Gaetano, A. Marotta, J. Mater. Sci: Mater. Med. 15(7), 831–837 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Research Item of Technology of Bureau of Sci. & Technol. of Xi’an city, Shaanxi Province of China (Grant no. GG 200354) and partially supported by the Natural Science Foundation of Shaanxi Province of China (Grant No. 2004B24) and the Research Team Foundation of Shaanxi University of Sci. & Technol.(sust-B104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Xiao, B. & Xu, KW. Synthesis and characterization of Ag/Cu/HAP with platelet morphology. J Mater Sci: Mater Med 20, 785–792 (2009). https://doi.org/10.1007/s10856-008-3630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3630-z

Keywords

Navigation