Skip to main content

Triphasic ceramic coated hydroxyapatite as a niche for goat stem cell-derived osteoblasts for bone regeneration and repair

Abstract

Current treatment strategies for the repair or replacement of bone use synthetic implants with stem cells and their progeny––a new approach to address unmet medical needs. This study has evaluated the effect of a silica-coated bioactive ceramic, namely HASi in comparison to hydroxyapatite (HA) on the adhesion, proliferation and osteogenic differentiation of goat bone marrow-derived mesenchymal stem cells in vitro in a prolonged culture of 28 days. The cellular activities were significantly enhanced on HASi signifying the role of silica to stimulate osteoblast cells. The fabrication of such a ‘cell-ceramic construct using autologous MSCs’ is aimed for the transplantation to a large bone defect site in the goat femur model which still remains a formidable challenge in Orthopedic surgery.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    P.V. Guillot, W. Cui, N.M. Fisk, D.J. Polak, J. Cell Mol. Med. 11, 935–944 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    A.I. Caplan, Tissue Eng. 11 1198–1211 (2005)

  3. 3.

    N. Jaiswal, S.E. Haynesworth, A.I. Caplan, S.P. Bruder, J. Cell Biochem. 64, 295–312 (1997)

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    S.L. Ishaug, G.M. Crane, M.J. Miller, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, J. Biomed. Mater. Res. 36, 17–28 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    G.M. Crane, S.L. Ishaug, A.G. Mikos, Nature Med. 1, 1322–1324 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    L.L. Hench, J. Biomed. Mater. Res. 15, 511–518 (1998)

    Article  Google Scholar 

  7. 7.

    M. Wang, Biomaterials 24, 2133–2151 (2003)

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    J. Vuola, R. Taurio, H. Goransson, S. Asko-Seljavaara, Biomaterials 19, 223 (1998)

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    E.M. Carlisle, Science 178, 619 (1972)

    Article  CAS  PubMed  ADS  Google Scholar 

  10. 10.

    A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Biomaterials 28, 4023–4032 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    P.V. Phan, M. Grzanna, J. Chu, A. Polotsky, A. EI-Ghannam, D. Van Heerden, D.S. Hungerford, C.G. Frondoza, J. Biomed. Mater. Res. 67A, 1001–1008 (2003)

    Article  CAS  Google Scholar 

  12. 12.

    M.B. Nair, S.S. Babu, H.K. Varma, A. John, Acta Biomater. 4, 173–181 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    A. John, M.B. Nair, H.K. Varma, A. Bernhardt, M. Gelinsky, Int. J. Appl. Ceram. Technol. 5, 11–19 (2008)

    Article  CAS  Google Scholar 

  14. 14.

    S.M. Mueller, S. Mizuno, L.C. Gersten, J. Glowacki, J. Bone Miner. Res. 14, 2118 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    I. Titorencu, V.V. Jinga, E. Constantinescu, A.V. Gafencu, C. Ciohodaru, I. Manolescu, C. Zaharia, M. Simionescu, Cytotherapy 9, 682–696 (2007)

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    T. Kizuki, M. Ohgaki, M. Katsura, S. Nakamura, K. Hashimoto, Y. Toda, S. Udagawa, K. Yamashita, Biomaterials 24, 941–947 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    M.A. Malik, D.A. Puleo, R. Bizios, R.H. Doremus, Biomaterials 13, 123–128 (1992)

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    K.D. Lobel, L.L. Hench, J. Biomed. Mater. Res. 39, 575–579 (1998)

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    W.N. Kee, T.W.L. David, W.H. Dietmar, Tissue Eng. 11, 182–191 (2005)

    Article  Google Scholar 

  20. 20.

    M. Hott, B. Noel, D. Bernache-Assolant, C. Rey, P.J. Marie, J. Biomed. Mater. Res. 37, 508–516 (1997)

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    A. Sepp, R.M. Binns, R.I. Lechler, J. Immunol. Methods 196, 175–180 (1996)

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    A.J. Salgado, O.P. Coutinho, R.L. Reis, Macromol. Biosci. 4, 743–765 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    S. Sánchez-Salcedo, I. Izquierdo-Barba, D. Arcos, M. Vallet-Regí, Tissue Eng. 12, 279–290 (2006)

    Article  PubMed  Google Scholar 

  24. 24.

    P. Valerio, M.M. Pereira, A.M. Goes, M.F. Leite, Biomaterials 25, 2941–2948 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    F.J. Hughes, J.E. Aubin, (Springer US 2007) 1–49

  26. 26.

    I.D. Xynos, A.J. Edgar, L.D. Buttery, L.L. Hench, J.M. Polak, J. Biomed. Mater. Res. 55, 151–157 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F. Cheung, B.A. Evans, R.P. Thompson, J.J. Powell, G.N. Hampson, Bone 32, 127–135 (2003)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank The Director, SCTIMST and The Head, BMT Wing, for the facilities provided, Mr. Suresh Babu S for material preparation, Mr. R. Sreekumar for SEM images, Dr. T. V. Anilkumar for cLSM, Dr. Sachin J. Shenoy for bone marrow aspiration, and CSIR for Senior Research fellowship for Ms. Manitha and DRDO for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Annie John.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nair, M.B., Varma, H.K. & John, A. Triphasic ceramic coated hydroxyapatite as a niche for goat stem cell-derived osteoblasts for bone regeneration and repair. J Mater Sci: Mater Med 20, 251 (2009). https://doi.org/10.1007/s10856-008-3598-8

Download citation

Keywords

  • Osteocalcin
  • Osteogenic Differentiation
  • Bioactive Glass
  • Acridine Orange
  • Calcium Silicate