Skip to main content
Log in

Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-l-lactide composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In order to investigate hydrolysis behavior and associated variation in mechanical properties of bioresorbable plastic composites, β-tricalcium phosphate (β-TCP)/poly(l-lactide) (PLLA), the immersion tests into phosphate buffered solution (PBS) with different pH were conducted. After the immersion tests, tensile, bending and compressive tests were conducted on the specimen. The significant decrease in the mechanical properties of the specimens with 5.0 wt% β-TCP contents were not observed in the pH = 7.4 immersion tests, whereas significant decrease were observed for the specimen with 9.5 and 14.0 wt% contents after 24 weeks. In the pH = 6.4 immersion tests, the degradation was accelerated. From the fracture surface observation, debondings between β-TCP and PLLA grew into the void shape in the ductile fracture surface before immersion tests, whereas the voids were observed in the brittle fracture surface after immersion tests. This is due to the bioresorption of β-TCP particles and/or β-TCP/PLLA interface. In order to discuss the degradation of mechanical properties, tensile modulus degradation was analyzed based on the micromechanics supposing the damaged particles as voids. Degradation tendency predicted was in good agreement with experimental results. These results suggested that the degradation in modulus was attributed to lower load capacity of β-TCP particles and lower load transfer to β-TCP particles due to the hydrolysis of the β-TCP particles and the interface between β-TCP and PLLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Migiaresi, L. Fambri, D. Cohn, J. Biomater. Sci. Polym. Ed. 5, 591–606 (1994). doi:10.1163/156856294X00220

    Article  Google Scholar 

  2. H. Pistner, H. Stallforth, R. Gutwald, J. Mühling, J. Reuther, C. Michel, Biomaterials 15, 439–450 (1994). doi:10.1016/0142-9612(94)90223-2

    Article  PubMed  CAS  Google Scholar 

  3. H. Pistner, D.R. Bendix, J. Mühling, J.F. Reuther, Biomaterials 14, 291–298 (1993). doi:10.1016/0142-9612(93)90121-H

    Article  PubMed  CAS  Google Scholar 

  4. E.A.R. Duek, C.A.C. Zavaglia, W.D. Belangero, Polymer (Guildf) 40, 6465–6473 (1999). doi:10.1016/S0032-3861(98)00846-5

    Article  CAS  Google Scholar 

  5. C.C.P.M. Verheyen, J.R. de Wijn, C.A. van Blitterswijk, K. de Groot, J. Biomed. Mater. Res. 26, 1277–1296 (1992). doi:10.1002/jbm.820261003

    Article  PubMed  CAS  Google Scholar 

  6. C.C.P.M. Verheyen, C.P.A.T. Klein, J.M.A. de Blieckhogervorst, J.G.C. Wolke, C.A. van Blitterswijn, K. de Groot, J. Mater. Sci. Mater. Med. 4, 58–65 (1993). doi:10.1007/BF00122979

    Article  CAS  Google Scholar 

  7. Y. Shikinami, M. Okuno, Biomaterials 20, 859–877 (1999). doi:10.1016/S0142-9612(98)00241-5

    Article  PubMed  CAS  Google Scholar 

  8. Y. Shikinami, M. Okuno, Biomaterials 22, 3197–3211 (2001). doi:10.1016/S0142-9612(01)00072-2

    Article  PubMed  CAS  Google Scholar 

  9. T. Furukawa, Y. Matsusue, T. Yasunaga, Y. Shikinami, M. Okuno, T. Nakamura, Biomaterials 21, 889–898 (2000). doi:10.1016/S0142-9612(99)00232-X

    Article  PubMed  CAS  Google Scholar 

  10. S. Hasegawa, S. Ishii, J. Tamura, T. Furukawa, M. Neo, T. Matsusue et al., Biomaterials 27, 1327–1332 (2006). doi:10.1016/j.biomaterials.2005.09.003

    Article  PubMed  CAS  Google Scholar 

  11. M. Kikuchi, Y. Suestugu, J. Tanaka, M. Akao, J. Mater. Sci. Mater. Med. 8, 361–364 (1997). doi:10.1023/A:1018580816388

    Article  PubMed  CAS  Google Scholar 

  12. A.A. Ignatius, P. Augat, L.E. Claes, J. Biomater. Sci. Polym. Ed. 12, 185–194 (2001). doi:10.1163/156856201750180915

    Article  PubMed  CAS  Google Scholar 

  13. S. Kobayashi, K. Sakamoto, JSME Int. J. Ser. A 49, 314–320 (2006). doi:10.1299/jsmea.49.314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, S., Sakamoto, K. Effect of hydrolysis on mechanical properties of tricalcium phosphate/poly-l-lactide composites. J Mater Sci: Mater Med 20, 379–386 (2009). https://doi.org/10.1007/s10856-008-3583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3583-2

Keywords

Navigation