Skip to main content

Advertisement

Log in

Preliminary investigation of novel bone graft substitutes based on strontium–calcium–zinc–silicate glasses

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone graft procedures typically require surgeons to harvest bone from a second site on a given patient (Autograft) before repairing a bone defect. However, this results in increased surgical time, excessive blood loss and a significant increase in pain. In this context a synthetic bone graft with excellent histocompatibility, built in antibacterial efficacy and the ability to regenerate healthy tissue in place of diseased tissue would be a significant step forward relative to current state of the art philosophies. We developed a range of calcium–strontium–zinc–silicate glass based bone grafts and characterised their structure and physical properties, then evaluated their in vitro cytotoxicity and in vivo biocompatibility using standardised models from the literature. A graft (designated BT109) of composition 0.28SrO/0.32ZnO/0.40 SiO2 (mol fraction) was the best performing formulation in vitro shown to induce extremely mild cytopathic effects (cell viability up to 95%) in comparison with the commercially available bone graft Novabone® (cell viability of up to 72%). Supplementary to this, the grafts were examined using the standard rat femur healing model on healthy Wister rats. All grafts were shown to be equally well tolerated in bone tissue and new bone was seen in close apposition to implanted particles with no evidence of an inflammatory response within bone. Complimentary to this BT109 was implanted into the femurs of ovariectomized rats to monitor the response of osteoporotic tissue to the bone grafts. The results from this experiment indicate that the novel grafts perform equally well in osteoporotic tissue as in healthy tissue, which is encouraging given that bone response to implants is usually diminished in ovariectomized rats. In conclusion these materials exhibit significant potential as synthetic bone grafts to warrant further investigation and optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.T. Laurencin, Y. Khan, Bone Grafts and Bone Graft Substitutes: A Brief Histrory (Bridgeport, New Jersey, 2003)

    Google Scholar 

  2. A.S. Greenwald, S.D. Boden, V.M. Goldberg, Y. Khan, C.T. Laurencin, R.N. Rosier, J. Bone Joint Surg. Am 83, 98 (2001)

    PubMed  Google Scholar 

  3. T.J. Cypher, J.P. Grossman, J. Foot Ankle Surg. 35, 413 (1996)

    Article  PubMed  CAS  Google Scholar 

  4. E.M. Younger, M.W. Chapman, J. Orthop. Trauma 3, 192 (1989). doi:10.1097/00005131-198909000-00002

    Article  PubMed  CAS  Google Scholar 

  5. W.R. Moore, S.E. Graves, G.I. Bain, ANZ J. Surg. 71, 354 (2001). doi:10.1046/j.1440-1622.2001.02128.x

    Article  PubMed  CAS  Google Scholar 

  6. Frost and Sullivan Market Report, U.S. Bone Graft and Bone Graft Substitutes (Frost and Sullivan, 2002)

  7. D.I. Ilan, A.L. Ladd, Oper. Tech. Plast. Reconstr. Surg. 9, 151 (2003). doi:10.1053/j.otpr.2003.09.003

    Article  Google Scholar 

  8. Control CFD, Update: Allograft-associated Bacterial Infections––United States. MMWR 51:207 (2002)

  9. R.J. Simonds, S.D. Holmberg, R.L. Hurwitz, S. Bottenfield, L.J. Conley, S.H. Kohlenberg et al., N. Engl. J. Med. 326, 726 (1992)

    PubMed  CAS  Google Scholar 

  10. M.C. von Doernberg, B. von Rechenberg, M. Bohner, S. Grunenfelder, G.H. van Lenthe, R. Muller et al., Biomaterials 27, 5186 (2006). doi:10.1016/j.biomaterials.2006.05.051

    Article  CAS  Google Scholar 

  11. K.A. Hing, L.F. Wilson, T. Buckland, J. Spine (in press)

  12. W.H. Bell, Oral Surg. 17, 405 (1964). doi:10.1016/0030-4220(64)90372-X

    Article  Google Scholar 

  13. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Biomaterials 27, 964 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  14. D.L. Wheeler, kE Stokes, R.G. Hoellrich, D.L. Chamberlain, S.W. McLoughlin, J. Biomed. Mater. Res. 41, 527 (1998). doi:10.1002/(SICI)1097-4636(19980915)41:4<527::AID-JBM3>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  15. J.R. Jones, L.L. Hench, Curr. Opin. Solid State Mater. Sci. 7, 301 (2003). doi:10.1016/j.cossms.2003.09.012

    Article  CAS  Google Scholar 

  16. I. Kinnunen, K. Aitsalo, M. Pollonen, M. Varpula, J. Craniomaxillofac. Surg. 28, 229 (2000). doi:10.1054/jcms.2000.0140

    PubMed  CAS  Google Scholar 

  17. Fairbank J, in 17th Interdisciplinary Research Conference On Biomaterials (Oxford, UK, 2007)

  18. D. Boyd, H. Li, D.A. Tanner, M.R. Towler, G.J. Wall, J. Mater. Sci. Mater. Med. 17, 489 (2006). doi:10.1007/s10856-006-8930-6

    Article  PubMed  CAS  Google Scholar 

  19. W.R. Holloway, F.M. Collier, R.E. Herbst, J.M. Hodge, G.C. Nicholson, Bone 19, 137 (1996). doi:10.1016/8756-3282(96)00141-X

    Article  PubMed  CAS  Google Scholar 

  20. J.P. Marie, Bone 40, S5 (2007). doi:10.1016/j.bone.2007.02.003

    Article  CAS  Google Scholar 

  21. A. Guida, M.R. Towler, G.J. Wall, R.G. Hill, S. Eramo, J. Mat, Sci. Lett. 22, 1401 (2003)

    Article  CAS  Google Scholar 

  22. International Standard 10993-5, Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity (International Organization Standardization, Case Postale 56, CH-1211, Geneve, Switzerland, 1999)

  23. D. Boyd, M.R. Towler, S. Watts, R.G. Hill, A.W. Wren, O.M. Clarkin, J. Mater. Sci. Mater. Med. 19, 953 (2008). doi:10.1007/s10856-006-0060-7

    Article  PubMed  CAS  Google Scholar 

  24. D. Boyd, M.R. Towler, R.V. Law, R.G. Hill, J. Mater. Sci. Mater. Med. 17, 397 (2006). doi:10.1007/s10856-006-8465-x

    Article  PubMed  CAS  Google Scholar 

  25. R. Zange, T. Kissel, Eur. J. Pharm. Biopharm. 44, 149 (1997). doi:10.1016/S0939-6411(97)00082-9

    Article  CAS  Google Scholar 

  26. J. Pan, T. Shirota, K. Ohno, K. Michi, J. Oral Maxillofac. Surg. 58, 877 (2000). doi:10.1053/joms.2000.8212

    Article  PubMed  CAS  Google Scholar 

  27. M. Motahashi, T. Shirota, Y. Tokugawa, K. Ohno, K. Michi, A. Yamaguchi, Oral Surg. Oral Med. Oral Pathol. 87, 145 (1999)

    Google Scholar 

  28. T. Shirota, K. Ohno, K. Suzuki, K. Michi, J. Oral Maxillofac. Surg. 51, 51 (1993)

    Article  PubMed  CAS  Google Scholar 

  29. K. Murai, F. Takeshita, Y. Ayukawa, T. Kiyoshima, T. Suetsugu, T. Tanaka, J. Biomed. Mater. Res. 30, 523 (1996). doi:10.1002/(SICI)1097-4636(199604)30:4<523::AID-JBM11>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  30. F. Takeshita, K. Murai, Y. Ayukawa, T. Suetsugu, J. Biomed. Mater. Res. 34, 1 (1997). doi:10.1002/(SICI)1097-4636(199701)34:1<1::AID-JBM1>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, D., Carroll, G., Towler, M.R. et al. Preliminary investigation of novel bone graft substitutes based on strontium–calcium–zinc–silicate glasses. J Mater Sci: Mater Med 20, 413–420 (2009). https://doi.org/10.1007/s10856-008-3569-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3569-0

Keywords

Navigation