Skip to main content
Log in

Effect of the hard segment chemistry and structure on the thermal and mechanical properties of novel biomedical segmented poly(esterurethanes)

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Two series of biomedical segmented polyurethanes (SPU) based on poly(ε-caprolactone) diol (PCL diol), 1,6-hexamethylene diisocyanate (HDI) or l-lysine methyl ester diisocyanate (LDI) and three novel chain extenders, were synthesized and characterized. Chain extenders containing urea groups or an aromatic amino-acid derivative were incorporated in the SPU formulation to strengthen the hard segment interactions through either bidentate hydrogen bonding or π-stacking interactions, respectively. By varying the composition of the hard segment (diisocyanate and chain extender), its structure was varied to investigate the structure-property relationships. The different chemical composition and symmetry of hard segment modulated the phase separation of soft and hard domains, as demonstrated by the thermal behavior. Hard segment association was more enhanced by using a combination of symmetric diisocyanate and urea-diol chain extenders. The hard segment cohesion had an important effect on the observed mechanical behavior. Polyurethanes synthesized using HDI (Series H) were stronger than those obtained using LDI (Series L). The latter SPU exhibited no tendency to undergo cold-drawing and the lowest ultimate properties. Incorporation of the aromatic chain extender produced opposite effects, resulting in polyurethanes with the highest elongation and tearing energy (Series H) and the lowest strain at break (Series L). Since the synthesized biodegradable SPU possess a range of thermal and mechanical properties, these materials may hold potential for use in soft tissue engineering scaffold applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Oertel, Polyurethane Handbook (Hanser Gardner Publications, Berlin, 1994)

    Google Scholar 

  2. P.A. Gunatillake, R. Adhikari, Eur. Cell. Mater. 5, 1 (2003)

    PubMed  CAS  Google Scholar 

  3. Gorna K, Gogolewski S in Synthetic Bioabsorbable Polymers for Implants. ASTM STP 1396, ed. by C.M. Agrawal, J.E. Parr, S.T. Lin (American Society for Testing and Materials, West Conshohocken, PA, 2000), p. 39

  4. S.A. Guelcher, Tissue Eng. Part B 14, 3 (2008)

    Article  CAS  Google Scholar 

  5. A. Marcos-Fernández, G.A. Abraham, J.L. Valentín, J. San Román, Polymer (Guildf) 47, 785 (2006). doi:10.1016/j.polymer.2005.12.007

    Article  Google Scholar 

  6. C. Alperin, P.W. Zandstra, K.A. Woodhouse, Biomaterials 26, 7377 (2005)

    Article  PubMed  CAS  Google Scholar 

  7. K.L. Fujimoto, J. Guan, H. Oshima, T. Sakai, W.R. Wagner, Thorac. Surg. 83, 648 (2007). doi:10.1016/j.athoracsur.2006.06.085

    Article  Google Scholar 

  8. J. Guan, K.L. Fujimoto, M.S. Sacks, W.R. Wagner, Biomaterials 26, 3961 (2005). doi:10.1016/j.biomaterials.2004.10.018

    Article  PubMed  CAS  Google Scholar 

  9. K. Gisselfält, B. Edberg, P. Flodin, Biomacromolecules 3, 951 (2002). doi:10.1021/bm025535u

    Article  PubMed  Google Scholar 

  10. R.G.J.C. Heijkants, R.V. van Calck, T.G. van Tienen, J.H. de Groot, P. Buma, A.J. Pennings, A.J. Pennings et al., Biomaterials 26, 4219 (2005). doi:10.1016/j.biomaterials.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  11. C.J. Spaans, J.H. de Groot, F.G. Dekens, A.J. Pennings, Polym. Bull. 41, 131 (1998). doi:10.1007/s002890050343

    Article  CAS  Google Scholar 

  12. S.A. Guelcher, K.M. Gallagher, J.E. Didier, D.B. Klinedinst, J.S. Doctor, A.S. Goldstein et al., Acta Biomater. 1, 471 (2005). doi:10.1016/j.actbio.2005.02.007

    Article  PubMed  Google Scholar 

  13. K.D. Kavlock, T.W. Pechar, J.O. Hollinger, S.A. Guelcher, A.S. Goldstein, Acta Biomater. 3, 475 (2007). doi:10.1016/j.actbio.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  14. S.A. Riboldi, N. Sadr, L. Pigini, P. Neuenschwander, M. Simonet, P. Mognol et al., J. Biomed. Mater. Res. 84A, 1094 (2008). doi:10.1002/jbm.a.31534

    Article  CAS  Google Scholar 

  15. J.J. Stankus, J. Guan, K. Fujimoto, W.R. Wagner, Biomaterials 27, 735 (2006). doi:10.1016/j.biomaterials.2005.06.020

    Article  PubMed  CAS  Google Scholar 

  16. M. Borkenhagen, R.C. Stoll, P. Neuenschwander, U.W. Suter, P. Aebischer, Biomaterials 19, 2155 (1998). doi:10.1016/S0142-9612(98)00122-7

    Article  PubMed  CAS  Google Scholar 

  17. M.D. Lelah, S.L. Cooper, Polyurethanes in Medicine (CRC Press Inc, Boca Raton, Florida, 1986)

    Google Scholar 

  18. G.A. Skarja, K.A. Woodhouse, J. Biomater. Sci. Polym. Ed. 9, 271 (1998). doi:10.1163/156856298X00659

    Article  PubMed  CAS  Google Scholar 

  19. Moore T, Ph.D. Thesis (Swinburne University of Technology, Australia, 2005)

  20. J. Guan, M.S. Sacks, E.J. Beckman, W.R. Wagner, J. Biomed. Mater. Res. 61, 493 (2002). doi:10.1002/jbm.10204

    Article  PubMed  CAS  Google Scholar 

  21. J.H. de Groot, R. de Vrijer, B.S. Wildeboer, C.J. Spaans, A.J. Pennings, Polym. Bull. 38, 211 (1997). doi:10.1007/s002890050040

    Article  Google Scholar 

  22. G.A. Abraham, A. Marcos-Fernández, J. San Román, J. Biomed. Mater. Res. 76A, 729 (2006). doi:10.1002/jbm.a.30540

    Article  CAS  Google Scholar 

  23. K. Gorna, S. Gogolewski, Polym. Deg. Stab. 75, 113 (2002). doi:10.1016/S0141-3910(01)00210-5

    Article  CAS  Google Scholar 

  24. P.C. Caracciolo, A.A.A. de Queiroz, O.Z. Higa, F. Buffa, G.A. Abraham, Acta Biomater. 4, 976 (2008). doi:10.1016/j.actbio.2008.02.016

    Article  PubMed  CAS  Google Scholar 

  25. D.W. Van Krevelen, Properties of Polymers (Elsevier, Amsterdam, 1990), p. 121

    Google Scholar 

  26. C.J. Spaans, J.H. de Groot, V.W. Belgraver, A.J. Pennings, J. Mater. Sci. Mater. Med. 9, 675 (1998). doi:10.1023/A:1008922128455

    Article  PubMed  CAS  Google Scholar 

  27. G.A. Skarja, K.A. Woodhouse, J. Appl. Polym. Sci. 75, 1522 (2000)

    Article  CAS  Google Scholar 

  28. G.M. Estes, S.L. Cooper, A.V. Tobolski, J. Macromol. Sci. Revs. Macromol. Chem. C4(2), 313 (1970)

    Google Scholar 

  29. J.A. Miller, S.B. Lin, K.K.S. Hwang, K.S. Wu, S.L. Cooper, Macromolecules 18, 32 (1985). doi:10.1021/ma00143a005

    Article  CAS  Google Scholar 

  30. T.D. Wang, D.J. Lyman, J. Polym. Sci. Polym. Chem. 31, 1983 (1993). doi:10.1002/pola.1993.080310806

    Article  Google Scholar 

  31. J.H. de Groot, R. de Vrijer, A.J. Pennings, J. Klompmaker, R.P.H. Veth, H.W.B. Jansen, Biomaterials 17, 163 (1996). doi:10.1016/0142-9612(96)85761-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

P.C. Caracciolo thanks to National Research Council (CONICET, Argentina) for the fellowship awarded. The authors would like to acknowledge the financial support of National Agency for the Promotion of Science and Technology (ANPCyT, Argentina), CONICET, and National University of Mar del Plata (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caracciolo, P.C., Buffa, F. & Abraham, G.A. Effect of the hard segment chemistry and structure on the thermal and mechanical properties of novel biomedical segmented poly(esterurethanes). J Mater Sci: Mater Med 20, 145–155 (2009). https://doi.org/10.1007/s10856-008-3561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3561-8

Keywords

Navigation