Investigation of carbon nanofibers as support for bioactive substances

  • Liliana Olenic
  • Gheorghe Mihailescu
  • Stela Pruneanu
  • Dan Lupu
  • Alexandru R. Biris
  • Petre Margineanu
  • Sorina Garabagiu
  • Alexandru S. Biris
Article

Abstract

In this paper we have studied the adsorption properties of various bio-active systems onto the surface of carbon nanofibers (CNF) synthesized by chemical vapor deposition (CVD). Amino acids (alanine, aspartic acid, glutamic acid) and glucose oxidase (GOx) were adsorbed on CNF and the results were compared with those obtained when activated carbon (AC) was used as support. CNF and AC properties (hydrophilic or hydrophobic properties) were characterized by the pH value, the concentration of acidic/basic sites and by naphthalene adsorption. CNF with immobilized GOx was additionally investigated as a highly sensitive glucose biosensor. An amperometric method was used in an original manner to detect the changes in the specific activity of GOx, immobilized longer time on CNF. The method demonstrates that not the whole enzyme adsorbed onto CNF can catalyze the oxidation of glucose from the solution.

References

  1. 1.
    Y.M. Volfkovich, A.Yu. Rychagov, O.N. Efimov, B.P. Tarasov, E.P. Krinichnaya, V.E. Sosenkin, N.F. Nikolskaya, A.P. Moravskii, Structural and electrochemical properties of carbon nanotubes and nanofibers. Russ. J. Electrochem. (Engl. Transl.) 38, 663 (2002). doi:10.1023/A:1016019021741 Google Scholar
  2. 2.
    F. Marken, M.L. Gerrard, I.M. Mellor, R.J. Mortimer, C.E. Madden, S. Fletcher et al., Voltammetry at carbon nanofiber electrodes. Electrochem. Commun. 3, 177 (2001). doi:10.1016/S1388-2481(01)00132-1 CrossRefGoogle Scholar
  3. 3.
    T.E. Mcknight, A.V. Melechko, M.A. Guillorn, V.I. Merkulov, M.J. Doktycz, C.T. Culbertson et al., Effects of microprocessing on the electrochemistry of Carbon nanofiber electrodes. J. Phys. Chem. B. 107, 10722 (2003). doi:10.1021/jp034872+ CrossRefGoogle Scholar
  4. 4.
    M.S. Kumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.-K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes. Solid-State Electron. 47, 2075 (2003). doi:10.1016/S0038-1101(03)00258-2 CrossRefGoogle Scholar
  5. 5.
    G.A. Kovalenko, E.V. Kuznetsova, Y.I. Mogilnykh, I.S. Andreeva, D.G. Kuvshinov, N.A. Rudina, Catalytic filamentous carbons for immobilization of biologically active substances and non-growing bacterial cells. Carbon 39, 1033 (2001). doi:10.1016/S0008-6223(00)00216-5 CrossRefGoogle Scholar
  6. 6.
    L. Zajoncova, M. Jilek, V. Beranova, P. Pec, A biosensor for the determination of amylase activity. Biosens. Bioelectron. 20, 240–245 (2004). doi:10.1016/j.bios.2004.01.006 PubMedCrossRefGoogle Scholar
  7. 7.
    J. Conyers, V. Moore, M. Lackey, R. Partha, P. Cherukuri, J. Hudson, A. Leonard, J. Tour, J. Huff, Biocompatibility of carbon nanostructures for therapeutic and diagnostic applications. Nanomedicine. 2(4), 304 (2006)Google Scholar
  8. 8.
    J.A. Lee, S.S. Lee, K.-C. Lee, P. Seil, B.-C. Woo, J.-O. Lee, Biosensor utilizing resist-derived carbon nanostructures. Appl. Phys. Lett. 90(26), 264103 (2007)CrossRefADSGoogle Scholar
  9. 9.
    J.J. Davis, M.L.H. Green, H.A.O. Hill, Y.C. Leung, P.J. Sadler, J. Sloan, A.V. Xavier, S.C. Tsang, The immobilisation of proteins in carbon nanotubes. Inorg. Chim. Acta 272, 261 (1998). doi:10.1016/S0020-1693(97)05926-4 CrossRefGoogle Scholar
  10. 10.
    R.J. Chen, Y. Zhang, D. Wang, H. Dai, Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123, 3838 (2001). doi:10.1021/ja010172b PubMedCrossRefGoogle Scholar
  11. 11.
    S. Wang, E.S. Humphreys, S.-Y. Chung, D.F. Delduco, S.R. Lusting, H. Wang et al., Peptides with selective affinity for carbon nanotubes. Nat. Mater. 2, 196 (2003). doi:10.1038/nmat833 PubMedCrossRefADSGoogle Scholar
  12. 12.
    V. Zorbas, A. Smith, A. Ortiz-Acevedo, H. Xie, G.R. Dieckmann, R.K. Draper et al., Importance of aromatic content for peptide/single-walled carbon nanotube interactions. J. Am. Chem. Soc. 127(35), 12323 (2005). doi:10.1021/ja050747v PubMedCrossRefGoogle Scholar
  13. 13.
    A.B. Dalton, A. Ortiz-Acevedo, V. Zorbas, E. Brunner, W.M. Sampson, S. Collins, J.M. Razal, M.M. Yoshida, R.H. Baughman, R.K. Draper, I.H. Musselman, M. Jose-Yacaman, G.R. Dieckmann, Hierarchical self-assembly of peptide coated carbon nanotubes. Adv. Funct. Mater. 14(12), 1147 (2004). doi:10.1002/adfm.200400190 CrossRefGoogle Scholar
  14. 14.
    G.R. Dieckmann, A.B. Dalton, P.A. Johnson, J. Razal, J. Chen, G.M. Giordano, E. Munoz, I.H. Musselman, R.H. Baughman, R.K. Draper, Controlled assembly of carbon nanotubes by designed amphiphilic peptide helices. J. Am. Chem. Soc. 125(7), 1770 (2003). doi:10.1021/ja029084x PubMedCrossRefGoogle Scholar
  15. 15.
    H.R. Byon, H.C. Choi, Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased schottky contact area for highly sensitive biosensor applications. J. Am. Chem. Soc. 128(7), 2188 (2006). doi:10.1021/ja056897n PubMedCrossRefGoogle Scholar
  16. 16.
    C.V. Nguyen, L. Delzeit, A.M. Cassell, J. Li, J. Han, M. Meyyappan, Preparation of nucleic acid functionalized carbon nanotube arrays. Nano. Lett. 2(10), 1079 (2002). doi:10.1021/nl025689f CrossRefGoogle Scholar
  17. 17.
    L. Olenic, G.H. Mihăilescu, D. Lupu, A.L. Biriş, P. Mărgineanu, Carbon nanofibres-supports for adsorption of biologically active substances. Studia UBB. Phys XLIX 3, 121 (2004)Google Scholar
  18. 18.
    D. Lupu, A.R. Biris, A. Jianu, C. Bunescu, E. Burkel, E. Indrea, G.H. Mihailescu, S. Pruneanu, L. Olenic, I. Misan, Carbon nanostructures produced by CCVD with induction heating. Carbon 42, 503 (2004). doi:10.1016/j.carbon.2003.12.034 CrossRefGoogle Scholar
  19. 19.
    S. Pruneanu, Z. Ali, G. Watson, S.Q. Hu, D. Lupu, A.R. Biris, L. Olenic, G. Mihailescu, Investigation of electrochemical properties of carbon nanofibres prepared by CCVD method. Part. Sci. Technol. 24, 311 (2006). doi:10.1080/02726350600840654 CrossRefGoogle Scholar
  20. 20.
    H.P. Boehms, Chemical identification of surface groups. Adv. Catal. 16, 179 (1966). doi:10.1016/S0360-0564(08)60354-5 CrossRefGoogle Scholar
  21. 21.
    M.M. Bradford, A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248 (1976). doi:10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Liliana Olenic
    • 1
  • Gheorghe Mihailescu
    • 1
  • Stela Pruneanu
    • 1
    • 2
  • Dan Lupu
    • 1
  • Alexandru R. Biris
    • 1
  • Petre Margineanu
    • 1
  • Sorina Garabagiu
    • 1
  • Alexandru S. Biris
    • 3
  1. 1.National Institute for R&D of Isotopic and Molecular TechnologiesCluj-NapocaRomania
  2. 2.School of Natural SciencesNewcastle UniversityNewcastleUK
  3. 3.Nanotechnology Center and Applied Science DepartmentUniversity of Arkansas at Little RockLittle RockUSA

Personalised recommendations