Skip to main content
Log in

Use of tissue transglutaminase and fibronectin to influence osteoblast responses to tricalcium phosphate scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To explore the possibility of controlling cell interaction with biomaterials, tricalcium phosphate scaffolds were modified using the enzyme tissue transglutaminase (tTgase) in conjunction with fibronectin. Previous reports in the literature have highlighted a number of favourable responses that this protein–enzyme complex can stimulate, including enhancing both cell adhesion, and mineralisation. Fibronectin and tTgase alone were used as controls, and a series of different concentrations of tTgase and fibronectin in combination were assessed. Cell metabolic activity, alkaline phosphatase production, and collagen content were all measured in cultures up to 28 days. Using tetracycline labelling, calcium containing multilayered regions were imaged and quantified. Addition of 6 μg fibronectin resulted in increased alkaline phosphatase activity in all combinations, while increased transglutaminase resulted in more collagen in the cell lysates. Samples treated with fibronectin produced many small mineralised areas, those with 6 μg fibronectin and transglutaminase produced numerous large mineralised areas. The mixture of fibronectin and transglutaminase may prove to be a useful treatment for producing increased osteoblast differentiation on scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. El-Ghannam, P. Ducheyne, I.M. Shapiro, J Orthop Res 17, 340 (1999). doi:10.1002/jor.1100170307

    Article  PubMed  CAS  Google Scholar 

  2. U. Geißler, U. Hempel, C. Wolf, D. Scharnweber, H. Worch, K.-W. Wenzel, J Biomed Mater Res 51, 752 (2000). doi :10.1002/1097-4636(20000915)51:4<752::AID-JBM25>3.0.CO;2-7

    Article  PubMed  Google Scholar 

  3. C. Roehleckea, M. Witta, M. Kaspera, E. Schulzec, C. Wolfb, A. Hofera et al., Cells Tissues Organs 168, 178 (2001). doi:10.1159/000047833

    Article  Google Scholar 

  4. D.M. Ferris, G.D. Moodie, P.M. Dimond, C.W.D. Giorani, M.G. Ehrlich, R.F. Valentini, Biomaterials 20, 2323 (1999). doi:10.1016/S0142-9612(99)00161-1

    Article  PubMed  CAS  Google Scholar 

  5. T.J. Gao, T.S. Lindholm, B. Kommonen, P. Ragni, A. Paronzizni, T.C. Lindholm et al., J Biomed Mater Res 32, 505 (1996). doi :10.1002/(SICI)1097-4636(199612)32:4<505::AID-JBM2>3.0.CO;2-V

    Article  PubMed  CAS  Google Scholar 

  6. L. Fesus, M. Piacentini, Trends Biochem Sci 27, 534 (2002). doi:10.1016/S0968-0004(02)02182-5

    Article  PubMed  CAS  Google Scholar 

  7. D. Aeschlimann, O. Kaupp, M. Paulsson, J Cell Biol 129, 881 (1995). doi:10.1083/jcb.129.3.881

    Article  PubMed  CAS  Google Scholar 

  8. S.S. Akimov, D. Krylov, L.F. Fleischman, A.M. Belkin, J Cell Biol 148, 825 (2000). doi:10.1083/jcb.148.4.825

    Article  PubMed  CAS  Google Scholar 

  9. D.C. Sane, T.L. Moser, A.M. Pippen, C.J. Parker, K.E. Achyuthan, G. CS, Biochem Biophys Res Commun 157, 115 (1988). doi:10.1016/S0006-291X(88)80020-2

    Article  PubMed  CAS  Google Scholar 

  10. M.T. Kaartinen, A. Pirhonen, A. Linnala-Kankkunen, P.H. Maenpaa, J Biol Chem 272, 22736 (1997). doi:10.1074/jbc.272.36.22736

    Article  PubMed  CAS  Google Scholar 

  11. M.T. Kaartinen, A. Pirhonen, A. Linnala-Kankkunen, P.H. Maenpaa, J Biol Chem 274, 1729 (1999). doi:10.1074/jbc.274.3.1729

    Article  PubMed  CAS  Google Scholar 

  12. M.T. Kaartinen, S. El-Maadaway, N.H. Rasanen, M.D. McKee, J Bone Miner Res 17, 2161 (2002). doi:10.1359/jbmr.2002.17.12.2161

    Article  PubMed  CAS  Google Scholar 

  13. S.S. Akimov, A.M. Belkin, J Cell Sci 114, 2989 (2001)

    PubMed  CAS  Google Scholar 

  14. D.J. Heath, S. Downes, E.A.M. Verderio, M. Griffin, J Bone Miner Res 16, 1477 (2001). doi:10.1359/jbmr.2001.16.8.1477

    Article  PubMed  CAS  Google Scholar 

  15. D. Aeschlimann, A. Wetterwald, H. Fleisch, M. Paulsson, J Cell Biol 120, 1461 (1993). doi:10.1083/jcb.120.6.1461

    Article  PubMed  CAS  Google Scholar 

  16. D. Aeschlimann, V. Thomazy, Connect Tissue Res 41, 1 (2000). doi:10.3109/03008200009005638

    Article  PubMed  CAS  Google Scholar 

  17. A. Ito, A. Mase, Y. Takizawa, M. Shinkai, H. Honda, K.-I. Hata et al., J Biosci Bioeng 95, 196 (2003)

    PubMed  CAS  Google Scholar 

  18. E.P. Broderick, D.M. O’Halloran, Y.A. Rochev, M. Griffin, R.J. Collighan, A.S. Pandit, J Biomed Mater Res B Appl Biomater 72, 37 (2005). doi:10.1002/jbm.b.30119

    Article  PubMed  Google Scholar 

  19. D.J. Heath, P. Christian, M. Griffin, Biomaterials 23, 1519 (2002). doi:10.1016/S0142-9612(01)00282-4

    Article  PubMed  CAS  Google Scholar 

  20. E.A.M. Verderio, A. Coombes, R.A. Jones, L. Xiaoling, D.J. Heath, S. Downes et al., J Biomed Mater Res 54, 294 (2001). doi :10.1002/1097-4636(200102)54:2<294::AID-JBM17>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  21. C.A. Gaudry, E. Verderio, R.A. Jones, C. Smith, M. Griffin, Exp Cell Res 252, 104 (1999). doi:10.1006/excr.1999.4633

    Article  PubMed  CAS  Google Scholar 

  22. R. Jones, B. Nicholas, S. Mian, P. Davies, M. Griffin, J Cell Sci 110, 2461 (1997)

    PubMed  CAS  Google Scholar 

  23. E.A.M. Verderio, D. Telci, A. Okoye, G. Melino, M. Griffin, J Biol Chem 278, 42604 (2003). doi:10.1074/jbc.M303303200

    Article  PubMed  CAS  Google Scholar 

  24. S. Ueki, J. Takagi, Y. Saito, J Cell Sci 109, 2727 (1996)

    PubMed  CAS  Google Scholar 

  25. A.J. Garcia, D. Boettiger, Biomaterials 20, 2427 (1999). doi:10.1016/S0142-9612(99)00170-2

    Article  PubMed  CAS  Google Scholar 

  26. A.J. Garcia, J. Takagi, D. Boettiger, J Biol Chem 273, 34710 (1998). doi:10.1074/jbc.273.52.34710

    Article  PubMed  CAS  Google Scholar 

  27. A. Moursi, R. Globus, C. Damsky, J Cell Sci 110, 2187 (1997)

    PubMed  CAS  Google Scholar 

  28. S.N. Stephansson, B.A. Byers, A.J. Garcia, Biomaterials 23, 2527 (2002). doi:10.1016/S0142-9612(01)00387-8

    Article  PubMed  CAS  Google Scholar 

  29. R. Dardik, B. Shenkman, I. Tamarin, R. Eskaraev, J. Harsfalvi, D. Varon et al., Thromb Res 105, 317 (2002). doi:10.1016/S0049-3848(02)00014-2

    Article  PubMed  CAS  Google Scholar 

  30. M. Nurminskaya, C. Magee, L. Faverman, T.F. Linsenmayer, Dev Biol 263, 139 (2003). doi:10.1016/S0012-1606(03)00445-7

    Article  PubMed  CAS  Google Scholar 

  31. D.J. McQuillan, M.D. Richardson, J.F. Bateman, Bone 16, 415 (1995)

    PubMed  CAS  Google Scholar 

  32. G. Meadows, Orthopaedics 25, s579 (2002)

    Google Scholar 

  33. R. Linovitz, T. Peppers, Orthopaedics 25, 585 (2002)

    Google Scholar 

  34. R. Rago, J. Mitchen, G. Wilding, Anal Biochem 191, 31 (1990). doi:10.1016/0003-2697(90)90382-J

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, M.D., O’Connor, D. & Pandit, A. Use of tissue transglutaminase and fibronectin to influence osteoblast responses to tricalcium phosphate scaffolds. J Mater Sci: Mater Med 20, 113–122 (2009). https://doi.org/10.1007/s10856-008-3547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3547-6

Keywords

Navigation