Skip to main content

Advertisement

Log in

The use of dual beam ESEM FIB to reveal the internal ultrastructure of hydroxyapatite nanoparticle-sugar-glass composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Microparticles (MP) spray dried from hydroxyapatite (HA) nanoparticle (NP) sugar suspensions are currently under development as a prolonged release vaccine vehicle. Those with a significant sugar component cannot be sectioned by ultramicrotomy as resins are excluded by the sugar. Focused ion beam (FIB) milling is the only method to prepare thin sections that enables the inspection of the MPs ultrastructure by transmission electron microscopy (TEM). Several methods have been explored and we have found it is simplest to encapsulate MPs in silver dag, sandwiched between gold foils for FIB-milling to enable multiple MPs to be sectioned simultaneously. Spray dried MPs containing 80% sugar have an inter-nanoparticle separation that is comparable with NP size (~50 nm). MPs spray dried with 50% sugar or no sugar are more tightly packed. Nano-porosity in the order of 10 nm exists between NPs. MPs spray dried in the absence of sugar and sectioned by ultramicrotomy or by FIB-milling have comparable nanoscale morphologies. Selected area electron diffraction (SAED) demonstrates that the HA remains (substantially) crystalline following FIB-milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.K. Nalla, A.E. Porter, C. Daraio, A.M. Minor, V. Radmilovic, E.A. Stach et al., Micron 36, 672 (2005). doi:10.1016/j.micron.2005.05.011

    Article  PubMed  CAS  Google Scholar 

  2. A.E. Porter, R.K. Nalla, A. Minor, J.R. Jinschek, C. Kisielowski, V. Radmilovic et al., Biomaterials 26, 7650 (2005). doi:10.1016/j.biomaterials.2005.05.059

    Article  PubMed  CAS  Google Scholar 

  3. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Biomaterials 25, 3303 (2004). doi:10.1016/j.biomaterials.2003.10.006

    Article  PubMed  CAS  Google Scholar 

  4. C. Quintana, Micron 28, 217 (1997). doi:10.1016/S0968-4328(97)00023-1

    Article  Google Scholar 

  5. G. Mcmahon, T. Malis, Microsc. Res. Tech. 31, 267 (1995). doi:10.1002/jemt.1070310403

    Article  PubMed  CAS  Google Scholar 

  6. P. Swab, Microsc. Res. Tech. 31, 308 (1995). doi:10.1002/jemt.1070310408

    Article  PubMed  CAS  Google Scholar 

  7. L.A. Giannuzzi, F.A. Stevie, Micron 30, 197 (1999). doi:10.1016/S0968-4328(99)00005-0

    Article  Google Scholar 

  8. J.A.W. Heymann, M. Hayles, I. Gestmann, L.A. Giannuzzi, B. Lich, S. Subramaniam, J. Struct. Biol. 155, 63 (2006). doi:10.1016/j.jsb.2006.03.006

    Article  PubMed  Google Scholar 

  9. R.M. Langford, Microsc. Res. Tech. 69, 538 (2006). doi:10.1002/jemt.20324

    Article  PubMed  CAS  Google Scholar 

  10. M.W. Phaneuf, Micron 30, 277 (1999). doi:10.1016/S0968-4328(99)00012-8

    Article  Google Scholar 

  11. M.D. Uchic, L. Holzer, B.J. Inkson, E.L. Principe, P. Munroe, MRS Bull. 32, 408 (2007)

    CAS  Google Scholar 

  12. D. Drobne, M. Milani, V. Leser, F. Tatti, Microsc. Res. Tech. 70, 895 (2007). doi:10.1002/jemt.20494

    Article  PubMed  Google Scholar 

  13. H. Engqvist, G.A. Botton, M. Couillard, S. Mohammadi, J. Malmstrom, L. Emanuelsson et al., J. Biomed. Mater. Res. A 78A, 20 (2006). doi:10.1002/jbm.a.30696

    Article  CAS  Google Scholar 

  14. H. Engqvist, F. Svahn, T. Jarmar, R. Detsch, H. Mayr, P. Thomsen et al., J. Mater. Sci. Mater. Med. 19, 467 (2008). doi:10.1007/s10856-006-0042-9

    Article  PubMed  CAS  Google Scholar 

  15. M. Obst, P. Gasser, D. Mavrocordatos, M. Dittrich, Am. Mineral. 90, 1270 (2005). doi:10.2138/am.2005.1743

    Article  CAS  Google Scholar 

  16. A. Heeren, C. Burkhardt, H. Wolburg, W. Henschel, W. Nisch, D.P. Kern, Microelectron. Eng. 83, 1602 (2006). doi:10.1016/j.mee.2006.01.114

    Article  CAS  Google Scholar 

  17. S. Kumar, W.A. Curtin, Mater. Today 10, 34 (2007). doi:10.1016/S1369-7021(07)70207-9

    Article  Google Scholar 

  18. L.F. Dobrzhinetskaya, R. Wirth, H.W. Green, Proc. Natl. Acad. Sci. USA 104, 9128 (2007). doi:10.1073/pnas.0609161104

    Article  PubMed  CAS  ADS  Google Scholar 

  19. Y. Hayashi, T. Yaguchi, K. Ito, T. Kamino, Scanning 20, 234 (1998)

    PubMed  CAS  Google Scholar 

  20. K. Hoshi, S. Ejiri, W. Probst, V. Seybold, T. Kamino, T. Yaguchi et al., J. Microsc. 201, 44 (2001). doi:10.1046/j.1365-2818.2001.00784.x

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  21. C.A. Volkert, S. Busch, B. Heiland, G. Dehm, J. Microsc. 214, 208 (2004). doi:10.1111/j.0022-2720.2004.01352.x

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  22. M.F. Hayles, D.J. Stokes, D. Phifer, K.C. Findlay, J. Microsc. 226, 263 (2007). doi:10.1111/j.1365-2818.2007.01775.x

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  23. M. Marko, C. Hsieh, R. Schalek, J. Frank, C. Mannella, Nat. Methods 4, 215 (2007). doi:10.1038/nmeth1014

    Article  PubMed  CAS  Google Scholar 

  24. J.E.M. Mcgeoch, J. Microsc. 227, 172 (2007). doi:10.1111/j.1365-2818.2007.01798.x

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  25. M.J. Gorbunoff, Methods Enzymol. 117, 370 (1985). doi:10.1016/S0076-6879(85)17022-9

    Article  PubMed  CAS  Google Scholar 

  26. M.J. Gorbunoff, Methods Enzymol. 182, 329 (1990). doi:10.1016/0076-6879(90)82028-Z

    Article  PubMed  CAS  Google Scholar 

  27. T. Matsumoto, M. Okazaki, M. Inoue, S. Yamaguchi, T. Kusunose, T. Toyonaga et al., Biomaterials 25, 3807 (2004). doi:10.1016/j.biomaterials.2003.10.081

    Article  PubMed  CAS  Google Scholar 

  28. B.G. Santoni, G.E. Pluhar, T. Motta, D.L. Wheeler, Biomed. Mater. Eng. 17, 277 (2007)

    PubMed  CAS  Google Scholar 

  29. M.P. Ferraz, A.Y. Mateus, J.C. Sousa, F.J. Monteiro, J. Biomed. Mater. Res. A 81A, 994 (2007). doi:10.1002/jbm.a.31151

    Article  CAS  Google Scholar 

  30. A. Slosarczyk, J. Szymura-Oleksiak, B. Mycek, Biomaterials 21, 1215 (2000). doi:10.1016/S0142-9612(99)00269-0

    Article  PubMed  CAS  Google Scholar 

  31. A. Uchida, Y. Shinto, N. Araki, K. Ono, J. Ortho. Res. 10, 440 (1992)

    Article  CAS  Google Scholar 

  32. A. Barroug, M.J. Glimcher, J. Ortho. Res. 20, 274 (2002)

    Article  CAS  Google Scholar 

  33. M. Imamura, T. Seki, K. Kunieda, S. Nakatani, K. Inoue, T. Nakano et al., Oncol. Rep. 2, 33 (1995)

    CAS  Google Scholar 

  34. C.C. Ribeiro, C.C. Barrias, M.A. Barbosa, Biomaterials 25, 4363 (2004). doi:10.1016/j.biomaterials.2003.11.028

    Article  PubMed  CAS  Google Scholar 

  35. M.P. Ginebra, T. Traykova, J.A. Planell, J. Control. Release 113, 102 (2006). doi:10.1016/j.jconrel.2006.04.007

    Article  PubMed  CAS  Google Scholar 

  36. P. Luo, T.G. Nieh, Biomaterials 17, 1959 (1996). doi:10.1016/0142-9612(96)00019-1

    Article  PubMed  CAS  Google Scholar 

  37. K.A. Hing, Int. J. Appl. Ceram. Technol. 2, 184 (2005). doi:10.1111/j.1744-7402.2005.02020.x

    Article  CAS  Google Scholar 

  38. P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Acta Biomater. 1, 65 (2005). doi:10.1016/j.actbio.2004.09.008

    Article  PubMed  Google Scholar 

  39. H. Kushida, J. Electron. Microsc. Tokyo 23, 197 (1974)

    PubMed  CAS  Google Scholar 

  40. L.A. Giannuzzi, J.L. Drown, S.R. Brown, R.B. Irwin, F. Stevie, Microsc. Res. Tech. 41, 285 (1998). 10.1002/(SICI)1097-0029(19980515)41:4<285::AID-JEMT1>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  41. J.M. Cairney, P.R. Munroe, Micron 34, 97 (2003). doi:10.1016/S0968-4328(03)00007-6

    Article  PubMed  CAS  Google Scholar 

  42. P. Gasser, U.E. Klotz, F.A. Khalid, O. Beffort, Microsc. Microanal. 10, 311 (2004). doi:10.1017/S1431927604040413

    Article  PubMed  CAS  ADS  Google Scholar 

  43. T. Ishitani, T. Yaguchi, Microsc. Res. Tech. 35, 320 (1996). doi:10.1002/(SICI)1097-0029(19961101)35:4 ≤ 320::AID-JEMT3 ≥ 3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

  44. J.M. Cairney, P.R. Munroe, Mater. Charact. 46, 297 (2001). doi:10.1016/S1044-5803(00)00107-8

    Article  CAS  Google Scholar 

  45. D.J. Stokes, T. Vystavel, F. Morrissey, J. Phys. D Appl. Phys. 40, 874 (2007). doi:10.1088/0022-3727/40/3/028

    Article  CAS  ADS  Google Scholar 

  46. D.J. Barber, Ultramicroscopy 52, 101 (1993). doi:10.1016/0304-3991(93)90025-S

    Article  CAS  Google Scholar 

  47. P. Eddisford, A. Brown, R. Brydson, J. Phys.: Conf. Ser. 126, 012008 (2008)

    Google Scholar 

  48. A. Meldrum, L.M. Wang, R.C. Ewing, Am. Mineral. 82, 858 (1997)

    CAS  Google Scholar 

  49. S. Rubanov, P.R. Munroe, Micron 35, 549 (2004). doi:10.1016/j.micron.2004.03.004

    Article  PubMed  CAS  Google Scholar 

  50. W. Boxleitner, G. Hobler, V. Kluppel, H. Cerva, Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 175, 102 (2001)

    ADS  Google Scholar 

  51. L. Alexandre, K. Rousseau, C. Alfonso, W. Saikaly, L. Fares, C. Grosjean et al., Micron 39, 294 (2008). doi:10.1016/j.micron.2007.01.005

    Article  PubMed  CAS  Google Scholar 

  52. D. Cooper, R. Truche, J.-L. Rouviere, Ultramicros 108, 488 (2008). doi:10.1016/j.ultramic.2007.08.006

  53. A. Wucher, J. Cheng, N. Winograd, Anal. Chem. 79, 5529 (2007). doi:10.1021/ac070692a

    Article  PubMed  CAS  Google Scholar 

  54. M. Marko, C. Hsieh, W. Moberlychan, C.A. Mannella, J. Frank, J. Microsc. 222, 42 (2006). doi:10.1111/j.1365-2818.2006.01567.x

    Article  PubMed  CAS  MathSciNet  Google Scholar 

  55. D.M.G. Degroot, J. Microsc. 151, 23 (1988)

    CAS  Google Scholar 

  56. M.A. Aronova, Y.C. Kim, G. Zhang, R.D. Leapman, Ultramicros 107, 232 (2007). doi:10.1016/j.ultramic.2006.07.009

    Article  CAS  Google Scholar 

  57. FEI Company (2000) Technical Note No. PN 25564-C

  58. T.S. Yeoh, N.A. Ives, N. Presser, G.W. Stupian, M.S. Leung, J.L. Mccollum et al., J. Vac. Sci. Technol. B 25, 922 (2007). doi:10.1116/1.2740288

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by a DTI grant (CHBS/004/00063C) held jointly by J. N. Skepper at the University of Cambridge and Cambridge Biostability Ltd. The Dual Beam FIB/ESEM was purchased with funds from the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, D.M., Rickard, J.J., Kyle, N.H. et al. The use of dual beam ESEM FIB to reveal the internal ultrastructure of hydroxyapatite nanoparticle-sugar-glass composites. J Mater Sci: Mater Med 20, 203–214 (2009). https://doi.org/10.1007/s10856-008-3539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3539-6

Keywords

Navigation