Skip to main content

Advertisement

Log in

Injectable iron-modified apatitic bone cement intended for kyphoplasty: cytocompatibility study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, the cytocompatibility of human ephitelial (HEp-2) cells cultured on new injectable iron-modified calcium phosphate cements (IM-CPCs) has been investigated in terms of cell adhesion, cell proliferation, and morphology. Quantitative MTT-assay and scanning electron microscopy (SEM) showed that cell adhesion and viability were not affected with culturing time by iron concentration in a dose-dependent manner. SEM-cell morphology showed that HEp-2 cells, seeded on IM-CPCs, were able to adhere, spread, and attain normal morphology. These results showed that the new injectable IM-CPCs have cytocompatible features of interest to the intended kyphophasty application, for the treatment of osteoporotic vertebral compression fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Takegami, T. Sano, H. Wakabayashi, J. Sonoda, T. Yamazaki, S. Morita, T. Shibuya, A. Uchida, New ferromagnetic bone cement for local hyperthermia. J. Biomed. Mater. Res. Part B Appl. Biomater. 43B, 210–214 (1998)

    Article  Google Scholar 

  2. D. Arcos, R.P. del Real, M. Vallet-Regi, Biphasic materials for bone grafting and hyperthermia treatment of cancer. J. Biomed. Mater. Res. 65A, 71–78 (2003)

    Article  CAS  Google Scholar 

  3. M. Kawashita, S. Domi, Y. Saito, M. Aoki, Y. Ebisawa, T. Kokubo, T. Saito, M. Takano, N. Araki, M. Hiraoka, In vitro heat generation by ferromagnetic maghemite microspheres for hyperthermia treatment of cancer under an alternating magnetic field. J. Mater. Sci.: Mater. Med. 19, 1897–1903 (2008)

    Article  CAS  Google Scholar 

  4. C.C. Berry, S. Wells, S. Charles, A.S.G. Curtis, Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblast in vitro. Biomaterials 24, 4551–4557 (2003)

    Article  CAS  Google Scholar 

  5. E.H. Kim, H.S. Lee, B.K. Kwak, B.K. Kim, Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328–330 (2005)

    Article  CAS  Google Scholar 

  6. O. Kakhlon, Z.I. Cabantchik, The labile iron pool: characterisation, measurement, and participation in cellular processes. Free Radic. Biol. Med. 33(8), 1037–1046 (2002)

    Article  CAS  Google Scholar 

  7. M.W. Henze, M.U. Muckenthaler, N.C. Andrews, Balancing acts: molecular control of mamalian iron metabolism. Cell 117, 285–297 (2004)

    Article  Google Scholar 

  8. R. Cotran, V. Kumar, A.K. Abbas, N. Fausto, in Pathologic Basis of Disease, ed. by Robbins & Cotran, Chapt 1, 7th edn. (WB Saunders Co., 2004), pp. 14–17

  9. S.V. Dorozhkin, Calcium orthophosphate cements for biomedical application. J. Mater. Sci. 43, 3028–3057 (2008)

    Article  CAS  Google Scholar 

  10. E. Fernández, F.J. Gil, S.M. Best, M.P. Ginebra, F.C.M. Driessens, J.A. Planell, Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-α-Ca3(PO4)2 system: compressive strength and microstructural development. J. Biomed. Mater. Res. 41, 560–67 (1998)

    Article  Google Scholar 

  11. E. Fernández , Bioactive Bone Cements. in Wiley Encyclopedia of Biomedical Engineering, 6-Volume Set. ed. by M. Akay. (Wiley, USA, 2006), pp. 1–9

    Google Scholar 

  12. A. Gisep, R. Wieling, M. Bohner, S. Matter, E. Schneider, B. Rahn, Resorption patterns of calcium-phosphate cements in bone. J. Biomed. Mater. Res. 66(3), 532–540 (2003)

    Article  CAS  Google Scholar 

  13. D. Apelt, F. Theiss, A.O. El-Warrak, K. Zlinszky, R.B. Wolfisberger, M. Bohner, S. Matter, J.A. Auer, B. von Rechenberg, In vitro behavior of three different injectable hydraulic calcium phosphate cements. Biomaterials 25, 1439–1451 (2004)

    Article  CAS  Google Scholar 

  14. M. Bohner, Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur. Spine. J. 10, S114–S121 (2001)

    Article  Google Scholar 

  15. S. Deb, J. Giri, S. Dasgupta, D. Datta, D. Bahadur, Synthesis and characterisation of biocompatible hydroxyapatite coated ferrite. Bull. Mater. Sci. 26(7), 655–660 (2003)

    Article  CAS  Google Scholar 

  16. D. Arcos, R.P. del Real, M. Vallet-Regi, A novel bioactive and magnetic biphasic material. Biomaterials 23, 2151–2158 (2002)

    Article  CAS  Google Scholar 

  17. M. Tyllianakis, D. Giannikas, A. Panagopoulos, E. Panagiotopoulos, E. Lambiris, Use of injectable calcium phosphate in the treatment of intra-articular distal radius fractures. Orthopedics 25(3), 311–315 (2002)

    Google Scholar 

  18. M. Bohner, U. Gbureck, J.E. Barralet, Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 26, 6423–6429 (2005)

    Article  CAS  Google Scholar 

  19. G. Lewis, Percutaneous vertebroplaty and kyphoplasty for the stand-alone augmentation of osteoporosis-induced vertebral compression fractures: present status and future directions. J. Biomed. Mater. Res. Part B: Appl. Biomater. 81B, 371–386 (2007)

    Article  CAS  Google Scholar 

  20. G. Lewis, Injectable bone cements for use in vertebroplasty and kyphoplasty: state of the art review. J. Biomed. Mater. Res. Part B: Appl. Biomater. 76B, 456–468 (2006)

    Article  CAS  Google Scholar 

  21. E. Fernández, M.D. Vlad, M. Hamcerencu, A. Darie, R. Torres, J. López, Effect of iron on the setting properties of α-TCP bone cements. J. Mater. Sci. 40, 3677–3682 (2005)

    Article  Google Scholar 

  22. M.D. Vlad, L.J. del Valle, M. Barracó, R. Torres, J. López, E. Fernández, Iron oxide nanoparticles significantly enhances the injectability of apatitic bone cement for vertebroplasty. Spine, (2008) (Accepted)

  23. E. Fernández, M.D. Vlad, M.M. Gel, J. López, R. Torres, J.V. Cauich, M. Bohner, Modulation of porosity in apatitic cements by the use of α-tricalcium phosphate–calcium sulphate dehydrate mixtures. Biomaterials 26, 3395–3404 (2005)

    Article  Google Scholar 

  24. M. Jiang, J. Terra, A.M. Rossi, M.A. Morales, E.M.B. Saitovitch, D.E. Ellis, Fe2+/Fe3+ substitution in hydroxyapatite: Theory and experiment. Phys. Rev. B 66(22), 224107-1–224107-15 (2002)

    Article  Google Scholar 

  25. E. Fernández, M.P. Ginebra, M.G. Boltong, F.C.M. Driessens, J.A. Planell, J. Ginebra, E.A.P. De Maeyer, R.M.H. Verbeeck, Kinetic study of the setting reaction of calcium phosphate bone cements. J. Biomed. Mater. Res. 32, 367–374 (1996)

    Article  Google Scholar 

  26. K. Anselme, M. Bigerelle, B. Noel, E. Dufresne, D. Judas, A. Iost, P. Hardouin, Qualitative and quantitative of human osteoblast adhesion on materials with various surface roughness. J. Biomed. Mater. Res. 49, 155–66 (2000)

    Article  CAS  Google Scholar 

  27. N. Ignjatovic, P. Ninkov, V. Kojic, M. Bokurov, V. Srdic, D. Krnojelac, S. Selakovic, D. Uskokovic, Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-di-lactide-co-glycolide biocomposites and different phosphate materials. Microsc. Res. Tech. 69, 976–982 (2006)

    Article  CAS  Google Scholar 

  28. T. Suzuki, R. Ohashi, Y. Yokogawa, K. Nishizawa, F. Nagata, Y. Kawamoto, T. Kameyama, M. Toriyama, Initial anchoring and proliferation of fibroblast L-929 cells on unstable surface of calcium phosphate ceramics. J. Biosci. Bioeng. 87(3), 320–327 (1999)

    Article  CAS  Google Scholar 

  29. C.G. Simon, W.F. Guthrie, F.W. Wang, Cell seeding into calcium phosphate cement. J. Biomed. Mater. Res. 68A, 628–639 (2004)

    Article  CAS  Google Scholar 

  30. P. Juin, M. Pelletier, L. Oliver, K. Tremblais, M. Gregoire, K. Meflah, F.M. Vallette, Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J. Biol. Chem. 273(28), 17559–17564 (1998)

    Article  CAS  Google Scholar 

  31. B. Qualmann, M.M. Kessels, R.B. Kelly, Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150(5), F111–F116 (2000)

    Article  CAS  Google Scholar 

  32. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Geometric control of cell life and death. Science 276, 1425–1428 (1997)

    Article  CAS  Google Scholar 

  33. J.T. Ninomiya, J.A. Struve, C.T. Stelloh, J.M. Toth, K.E. Crosby, Effects of hydroxyapatite particulate debris on the production of cytokines and proteases in human fibroblasts. J. Orthop. Res. 19, 621–628 (2001)

    Article  CAS  Google Scholar 

  34. D.P. Pioletti, H. Takei, T. Lin, P. Van Landuyt, Q.J. Ma, S.Y. Kwon, K.L.P. Sung, The effects of calcium phosphate cement particles on osteoblast functions. Biomaterials 21, 1103–1114 (2000)

    Article  CAS  Google Scholar 

  35. K. Anselme, Osteoblast adhesion on biomaterials. Biomaterials 21, 667–681 (2000)

    Article  CAS  Google Scholar 

  36. C.C. Berry, G. Campbell, A. Spadiccino, M. Robertson, A.S.G. Curtis, The influence of microscale topography on fibroblast attachment and mobility. Biomaterials 25, 5781–5788 (2004)

    Article  CAS  Google Scholar 

  37. E.M. Harnett, J. Alderman, T. Wood, The surface energy of various biomaterials coated with adhesion molecules used in cell culture. Colloids Surf. B Biointerfaces 55, 90–97 (2007)

    Article  CAS  Google Scholar 

  38. T. Yoshida, E. Yoshimura, H. Numata, Y. Sakakura, T. Sakakura, Involvement of tenascin-C in proliferation and migration of laryngeal carcinoma cells. Virchows Archiv. 435, 496–500 (1999)

    Article  CAS  Google Scholar 

  39. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter (ed.), Molecular Biology of the cell, 4th edn. (Garland Science, NY, 2002), pp. 907–1080

  40. B. Safiejko-Mroczka, P.B. Bell, Reorganization of the actin cytoscheleton in the protruding lamellae of human fibroblasts. Cell Motil. Cytoskeleton 50, 13–32 (2001)

    Article  CAS  Google Scholar 

  41. H. Lefaix, A. Asselin, P. Vermaut, J.M. Sautier, A. Berdal, R. Portier, F. Prima, On the biocompatibility of a novel Ti-based amorphouos composite: structural characterisation and in vitro osteoblasts response. J. Mater. Sci.: Mater. Med. 19, 1861–1869 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank funding through projects SGR200500732 (Generalitat de Catalunya) and MAT200502778 (Ministerio de Educación y Ciencia of Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlad, M.D., del Valle, L.J., Poeata, I. et al. Injectable iron-modified apatitic bone cement intended for kyphoplasty: cytocompatibility study. J Mater Sci: Mater Med 19, 3575–3583 (2008). https://doi.org/10.1007/s10856-008-3513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3513-3

Keywords

Navigation