Skip to main content
Log in

Preparation and characterization of diazeniumdiolate releasing ethylcellulose films

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A monolayer and trilayer membrane configuration of ethylcellulose were doped with a new synthesized diazeniumdiolate GAGS/NO (glutaraldehyde modification of glucosamine/NO adduct) and DETA/NO as the NO donor species, which can be used for altering the time course of nitric oxide donor release and targeting it to tissues with which the polymers are in physical contact. The NO donor release profiles show that the average release rate of DETA/NO can be controlled from 0.2 to 9 × 10−10mol cm−2 min−1 for at least 7 day and up to 30 day under physiological condition. The average release rate of GAGS/NO is varied from 0.1 to 0.5 × 10−10mol cm−2 min−1 for up to 94 day. The trilayer configuration effectively eliminates the burst release in the initial stage, and notably increases the NO donor release time. The trilayer films of DETA/NO can release 5% of the total NO donors over 69 h. In comparison, the trilayer films of GAGS/NO only release 2.5% of the total NO donors over 69 h. The results suggest that this nitric oxide donor releasing polymer may hold considerable promise for reducing the risk of restenosis following angioplasty and other interventional procedures for vascular repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Anderson, K. Kottke-Marchant, CRC Crit. Rev. Biocompat. 1, 111 (1985)

    CAS  Google Scholar 

  2. K.A. Mowery, M.H. Schoenfischchoenfisch, M.E. Meyerhoff et al., Biomaterials 21, 9 (2000)

    Article  PubMed  CAS  Google Scholar 

  3. J.G. Umans, R. Levi, Annu. Rev. Physiol. 57, 771 (1995)

    Article  PubMed  CAS  Google Scholar 

  4. D.M. Lloyd-Jones, K.D. Bloch, Annu. Rev. Med. 47, 365 (1996)

    Article  PubMed  CAS  Google Scholar 

  5. M.C. Frost, M.M. Reynolds, M.E. Meyerhoff, Biomaterials 26, 1685 (2005)

    Article  PubMed  CAS  Google Scholar 

  6. S.R. Hanson, T.C. Hutsell, L.K. Keefer et al., Adv. Pharmacol. 34, 383 (1995)

    Article  PubMed  CAS  Google Scholar 

  7. D.J. Smith, D. Chakravarthy, S. Pulfer, L.K. Keefer et al., J. Med. Chem. 39, 1148 (1996)

    Article  PubMed  CAS  Google Scholar 

  8. P. Gabikian, R.E. Clatterbuck, C.G. Eberhart et al., Stroke 33, 2681 (2002)

    Article  PubMed  Google Scholar 

  9. T.S. Tierney, R.E. Clatterbuck, C. Lawson et al., Neurosurgery 49, 945 (2001)

    Article  PubMed  CAS  Google Scholar 

  10. A. Chaux, X.M. Ruan, M.C. Fishbein et al., J. Thorac. Cardiovasc. Surg. 115, 604 (1998)

    Article  PubMed  CAS  Google Scholar 

  11. M.M. Batchelor, S.L. Reoma, M.E. Meyerhoff et al., J. Med. Chem. 46, 5153 (2003)

    Article  PubMed  CAS  Google Scholar 

  12. H. Zhang, G.M. Annich, M.E. Meyerhoff et al., Biomaterials 23, 1485 (2002)

    Article  PubMed  CAS  Google Scholar 

  13. P.G. Parzuchowski, M.C. Frost, M.E. Meyerhoff, J. Am. Chem. Soc. 124, 12182 (2002)

    Article  PubMed  CAS  Google Scholar 

  14. Z. Zhou, M.E. Meyerhoff, Biomacromolecules 6, 780 (2005)

    Article  Google Scholar 

  15. H.W. Jun, L.J. Taite, J.L. West, Biomacromolecules 6, 838 (2005)

    Article  PubMed  CAS  Google Scholar 

  16. B.J. Nablo, T.Y. Chen, M.H. Schoenfisch, J. Am. Chem. Soc. 123, 9712 (2001)

    Article  PubMed  CAS  Google Scholar 

  17. S.M. Marxer, A.R. Rothrock, M.H. Schoenfisch et al., Chem. Mater. 15, 4193 (2003)

    Article  CAS  Google Scholar 

  18. N. Sainji, Y. Hiroyuki, H. Yoshiyuki et al., Chem. Pharm. Bull. 41, 329 (1993)

    Google Scholar 

  19. J.A. Hrabie, J.R. Klose, L.K. Keefer et al., J. Org. Chem. 58, 1472 (1993)

    Article  CAS  Google Scholar 

  20. C. Privat, F. Lantoine, F. Bedioui et al., Life Sci. 61, 1193 (1997)

    Article  PubMed  CAS  Google Scholar 

  21. R.S. Drago, B.R. Karstetter, J. Am. Chem. Soc. 83, 1819 (1961)

    Article  Google Scholar 

  22. R.S. Drago, R.O. Ragsdale, D.P. Eyman, J. Am. Chem. Soc. 83, 4337 (1961)

    Article  CAS  Google Scholar 

  23. S. Choksakulnimitr, S. Masudas, H. Tokuda et al., J. Control. Release 34, 233 (1995)

    Article  CAS  Google Scholar 

  24. W. Godkey, K. Wu, A. Mikos, Biomaterials 22, 471 (2001)

    Article  Google Scholar 

  25. J.W. Anderson, R.J. Nicolosi, J.F. Borzelleca, Food Chem. Toxicol. 43, 187 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. D.J. Smith, S. Serhatkulu (2001). US6261594

  27. J.A. Hrabie, L.K. Keefer, Chem. Rev. 102, 1135 (2002)

    Article  PubMed  CAS  Google Scholar 

  28. K.M. Davies, D.A. Wink, L.K. Keefer et al., J. Am. Chem. Soc. 123, 5473 (2001)

    Article  PubMed  CAS  Google Scholar 

  29. N. Grattard, M. Pernin, B. Marty et al., J. Control. Release 84, 125 (2002)

    Article  PubMed  CAS  Google Scholar 

  30. M.W. Vaughn, L. Kuo, J.C. Liao, Am. J. Physiol. 274, H2163 (1998)

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is financially supported by the National Natural Science Foundation of China. (Grant No: 20376045 and 20676079), and partly supported by the Nanometer Technology Program of Science and Technology Committee of Shanghai (0452nm037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajun Wan or Huili Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, A., Gao, Q. & Li, H. Preparation and characterization of diazeniumdiolate releasing ethylcellulose films. J Mater Sci: Mater Med 20, 321–327 (2009). https://doi.org/10.1007/s10856-008-3511-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3511-5

Keywords

Navigation