Skip to main content

Advertisement

Log in

Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Background Reconstruction of large segment of bony defects is frequently needed in hand surgery. Autogenous bone grafting is considered the standard in management of these bony defects but has limited source of graft material. Collagen and hydroxyapatite have been used as bone-filling materials and are known to serve as the osteoconductive scaffold for bone regeneration. On the other hand, platelet-rich plasma is a kind of natural source of growth factors, and has been used successfully in bone regeneration and improving wound healing. This study was designed to evaluate the effectiveness of using biohybrids of platelet-rich plasma and collagen-hydroxyapatite beads for fabricating of protrusive bone in a rabbit animal model. Methods Biomaterial beads comprised of particulate hydroxyapatite dispersed in fibrous collagen (type I) matrices were prepared and filled in the ringed polytetrafluoroethylene (PTFE) artificial vascular graft (3 cm long, 1 cm in diameter). New Zealand White rabbits were each implanted with two cylindrical PTFE artificial vascular graft over both iliac crests (n = 16). A 2 × 0.5 cm opening was created at the side of each PTFE chamber to allow the content of chamber in contact with the bone marrow of the ileum. The chambers were empty (groups A and D), filled with type I collagen/hydroxyapatite beads (groups B and C). In groups C and D, autologous platelet rich plasma (PRP) was given by transcutaneous injection method into the chambers every week. After 12 weeks, the animals were sacrificed and the chambers were harvested for radiological and histological analysis. Results In plain radiographs, the group C chambers had significantly higher bone tissue engineered (average calcified density 0.95, average calcified area 61.83%) compared with other groups (P < 0.001). In histological examination, there was a creeping substitution of the implant by the in-growth of fibrovascular tissue in group C. Abundant fibrovascular networks positioned interstitially between these biomaterial beads in all parts of chamber. Degradation of these beads and newly formed capillaries and osteoids around the degraded matrixes are shown. The continually calcification in the matrixes or degraded matrixes is evidenced by the strong green fluorescence observed under the confocal microscope. In group B, looser architecture without evidence of tissue in-growth was shown. In the scaffold absent groups (A and D), there was only fibrous tissue shown within the chamber. Conclusions In this study, we have demonstrated a feasible approach to fabricate an osseous tissue that meets clinical need. Using the type I collagen/ hydroxyapatite gel beads matrixes and intermittent injection of autologous platelet-rich-plasma, specific 3D osseous tissues with fibrovascular network structure from pre-exist bony margin were successfully created in an in vivo animal model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Langer, J.P. Vacanti, Tissue engineering. Science 260, 920–926 (1993). doi:10.1126/science.8493529

    Article  PubMed  CAS  ADS  Google Scholar 

  2. G.M. Crane, S.L. Ishaug, A.G. Mikos, Bone tissue engineering. Nat. Med. 1, 1322–1324 (1995). doi:10.1038/nm1295-1322

    Article  PubMed  CAS  Google Scholar 

  3. Y. Weng, Y. Cao, C.A. Silva, M.P. Vacanti, C.A. Vacanti, Tissue-engineered composites of bone and cartilage for mandible condylar reconstruction. J. Oral Maxillofac. Surg. 59, 185 (2001). doi:10.1053/joms.2001.20491

    Article  PubMed  CAS  Google Scholar 

  4. L.G. Cima, J.P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, R. Langer, Tissue engineering by cell transplantation using degradable polymer substrates. J. Biomech. Eng. 113, 143–151 (1991). doi:10.1115/1.2891228

    Article  PubMed  CAS  Google Scholar 

  5. L.D. Shea, D. Wang, R.T. Franceschi, D.J. Mooney, Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng. 6(6), 605–617 (2000). doi:10.1089/10763270050199550

    Article  PubMed  CAS  Google Scholar 

  6. M.C. Wake, C.W. Patrick, A.G. Mikos, Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant. 3, 339–343 (1994)

    PubMed  CAS  Google Scholar 

  7. T. Yoshikawa, H. Ohgushi, H. Nakajima et al., In vivo osteogenetic durability of cultured bone in porous ceramics: a novel method for autogenous bone graft substitution. Transplantation 69, 128 (2000). doi:10.1097/00007890-200001150-00022

    Article  PubMed  CAS  Google Scholar 

  8. N. Tamai, A. Myoui, T. Tomita et al., Novel hydroxyapatite ceramics with an interconnective porous structure exhibit superior osteoconduction in vivo. J. Biomed. Mater. Res. 59, 110 (2002). doi:10.1002/jbm.1222

    Article  PubMed  CAS  Google Scholar 

  9. H.A. Marouf, A.A. Quayle, P. Sloan, In vitro and in vivo studies with collagen/hydroxyapatite implants. Int. J. Oral Maxillofac. Implants 5, 148–154 (1990)

    PubMed  CAS  Google Scholar 

  10. S. Kale, S. Biermann, C. Edwards, C. Tarnowski, M. Morris, M.W. Long, Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol. 18, 954 (2000). doi:10.1038/79439

    Article  PubMed  CAS  Google Scholar 

  11. A.K. Gosain, L. Song, P. Riordan et al., A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model. Part I. Plast. Reconstr. Surg. 109, 619 (2002). doi:10.1097/00006534-200202000-00032

    Article  PubMed  Google Scholar 

  12. F.Y. Hsu, S.C. Chueh, Y.J. Wang, Microspheres of hydroxyapatite/reconstituted collagen as supports for osteoblast cell growth. Biomaterials 20, 1931–1936 (1999). doi:10.1016/S0142-9612(99)00095-2

    Article  PubMed  CAS  Google Scholar 

  13. H. Schilephake, Bone growth factors in maxillofacial skeletal reconstruction. Int. J. Oral Maxillofac. Surg. 31(5), 469–484 (2002). doi:10.1054/ijom.2002.0244

    Article  PubMed  CAS  Google Scholar 

  14. R.E. Marx, E.R. Carlson, R.M. Eichstaedt, S.R. Schimmele, J.E. Strauss, K.R. Georgeff, Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 85, 638–646 (1998). doi:10.1016/S1079-2104(98)90029-4

    Article  PubMed  CAS  Google Scholar 

  15. D. Sonnleitner, P. Huemer, D.Y. Sullivan, A simplified technique for producing platelet rich plasma and platelet concentrate for intraoral bone grafting techniques: a technical note. J. Oral Maxillofac. Implants 15, 879–882 (2000)

    CAS  Google Scholar 

  16. A. Dugrillon, H. Eichler, S. Kern, H. Kluter, Autologous concentrated platelet-rich plasma (cPRP) for local application in bone regeneration. Int. J. Oral Maxillofac. Surg. 31(6), 615–619 (2002). doi:10.1054/ijom.2002.0322

    Article  PubMed  CAS  Google Scholar 

  17. T. Oyama, S. Nishimoto, T. Tsugawa, F. Shimizu, Efficacy of platelet-rich plasma in alveolar bone grafting. J. Oral Maxillofac. Surg. 62(5), 555–558 (2004). doi:10.1016/j.joms.2003.08.023

    Article  PubMed  Google Scholar 

  18. J.J. de Obarrio, J.I. Arauz-Dutari, T.M. Chamberlain, A. Croston, The use of autologous growth factors in periodontal surgical therapy: platelet gel biotechnology—case reports. Int. J. Periodontics Restorative Dent. 20, 486–497 (2000)

    PubMed  Google Scholar 

  19. C. Dahlin, A. Linde, J. Gottlow, S. Nyman, Healing of bone defects by guided tissue regeneration. Plast. Reconstr. Surg. 81, 672 (1988). doi:10.1097/00006534-198805000-00004

    Article  PubMed  CAS  Google Scholar 

  20. A. Hokugo, Y. Kubo, Y. Takahashi et al., Prefabrication of vascularized bone graft using guided bone regeneration. Tissue Eng. 10, 978 (2004)

    PubMed  CAS  Google Scholar 

  21. I. Miyamoto, Y. Tsuboi, K. Takahashi et al., Enhancement of bone volume in guided bone augmentation by cell transplants derived from periosteum: an experimental study in rabbit calvarium bone. Clin. Oral Implants Res. 15, 308 (2004). doi:10.1111/j.1600-0501.2004.01011.x

    Article  PubMed  Google Scholar 

  22. R.C. Thomson, A.G. Mikos, E. Beahm, J.C. Lemon, W.C. Satterfield, T.B. Aufdemorte, M.J. Miller, Guided tissue fabrication from periosteum using preformed biodegradable polymer scaffolds. Biomaterials 20, 2007 (1999)

    Google Scholar 

  23. M. Kellomaki, H. Niiranen, K. Puumanen, N. Ashammakhi, T. Waris, P. Tormala, Bioabsorbable scaffolds for guided bone regeneration and generation. Biomaterials 21, 2495 (2000). doi:10.1016/S0142-9612(00)00117-4

    Article  PubMed  CAS  Google Scholar 

  24. L.L.H. Huang-Lee, M.E. Nimni, Preparation of type I collagen fibrillar matrices and the effects of collagen concentration of fibroblast contraction. Biomed. Eng. Appl. Basis Commun. 5, 664–675 (1993)

    Google Scholar 

  25. G. Merlino, M. Borsetti, M. Boltri, Reverse radial artery bone flap reconstruction of segmental metacarpal losses. J. Hand. Surg. [Br] 32(1), 98–101 (2007). doi:10.1016/j.jhsb.2006.08.015

    CAS  Google Scholar 

  26. H.-B. Lee, K.-C. Tark, S.-Y. Kang, S.-W. Kim, Y.-K. Chung, Reconstruction of composite metacarpal defects using a fibula free flap. Plast. Reconstr. Surg. 105(4), 1448–1452 (2000). doi:10.1097/00006534-200004040-00029

    Article  PubMed  CAS  Google Scholar 

  27. V.R. Hentz, J. Chang, Tissue engineering for reconstruction of the thumb. N. Engl. J. Med. 344, 1547–20 (2001). doi:10.1056/NEJM200105173442011

    Article  PubMed  CAS  Google Scholar 

  28. E. Sachlos, J.T. Czernuszka, Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cell Mater. 5, 29–40 (2003)

    Google Scholar 

  29. D.-A. Wahl, E. Sachlos, C.-E. Liu, J.T. Czernuszka, Controlling the processing of collagen-hydroxyapatite scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 18(2), 201–209 (2007). doi:10.1007/s10856-006-0682-9

    Article  PubMed  CAS  Google Scholar 

  30. E. Sachlos, D. Gotora, J.T. Czernuszka, Collagen scaffolds reinforced with biomimetic composite nano-sized carbonate-substituted hydroxyapatite crystals and shaped by rapid prototyping to contain internal microchannels. Tissue Eng. 12(9), 2479–2487 (2006). doi:10.1089/ten.2006.12.2479

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from Ministry of Education-Aim for the Top University Plan, and from the Mackay Memorial Hospital, Taipei, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan-Yi Tung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, SH., Hsu, YM., Wang, Y.J. et al. Fabrication of pre-determined shape of bone segment with collagen-hydroxyapatite scaffold and autogenous platelet-rich plasma. J Mater Sci: Mater Med 20, 23–31 (2009). https://doi.org/10.1007/s10856-008-3507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3507-1

Keywords

Navigation