Skip to main content

Advertisement

Log in

Bone-like apatite layer formation on the new resin-modified glass-ionomer cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, the apatite-forming ability of the new resin-modified glass-ionomer cement was evaluated by soaking the cement in the simulated body fluid. The Fourier Transform Infrared (FTIR) spectrometer and X-Ray Diffraction (XRD) patterns of the soaked cement pointed to the creation of poorly crystalline carbonated apatite. It was found that the releasing of calcium ions from the soaked cement will dominate the undesirable effect of polyacrylic acid on apatite formation. Consequently, the ionic activity products (IAPs) of the apatite in the surrounding medium increased which accelerated apatite nucleation induced by the presence of the Si–OH and COOH groups. Accordingly, the apatite nuclei started to form via primary heterogeneous nucleation and continued by secondary nucleation. Therefore, nucleation and growth occurs as in the layer-by-layer mode so that finite numbers of monolayers are produced. Subsequent formation of film occurs by formation of discrete nuclei (layer-plus-island or SK growth).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.W. Nicholson, Biomaterials 19, 485 (1998). doi:10.1016/S0142-9612(97)00128-2

    Article  CAS  Google Scholar 

  2. G.J. Mount, Biomaterials 19, 573 (1998). doi:10.1016/S0142-9612(97)00139-7

    Article  CAS  Google Scholar 

  3. W. Kanchanavasita, H.M. Anstice, G.J. Pearson, Biomaterials 19, 1703 (1998). doi:10.1016/S0142-9612(98)00079-9

    Article  CAS  Google Scholar 

  4. A.D. Wilson, Int. J. Prosthodont. 3, 425 (1990)

    CAS  Google Scholar 

  5. G. Palmer, H.M. Anstice, G.J. Pearson, J. Dent. 27, 303 (1999). doi:10.1016/S0300-5712(98)00058-X

    Article  CAS  Google Scholar 

  6. P.V. Hatton, K. Hurrell-Gillingham, I.M. Brook, J. Dent. 34, 598 (2006). doi:10.1016/j.jdent.2004.10.027

    Article  CAS  Google Scholar 

  7. A.U.J. Yap, Y.S. Pek, R.A. Kumar, P. Cheang, K.A. Khor, Biomaterials 23, 955 (2002). doi:10.1016/S0142-9612(01)00208-3

    Article  CAS  Google Scholar 

  8. I.M. Brook, P.V. Hatton, Biomaterials 19, 565 (1998). doi:10.1016/S0142-9612(98)00138-0

    Article  CAS  Google Scholar 

  9. M. Kamitakahara, M. Kawashita, T. Kokubo, T. Nakamura, Biomaterials 22, 3191 (2001). doi:10.1016/S0142-9612(01)00071-0

    Article  CAS  Google Scholar 

  10. L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991). doi:10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  11. T. Kokubo, Biomaterials 12, 155 (1991). doi:10.1016/0142-9612(91)90194-F

    Article  CAS  Google Scholar 

  12. C. Ohtsuki, T. Kokubo, T. Yamamura, J. Non-Cryst. Solids 143, 84 (1992). doi:10.1016/S0022-3093(05)80556-3

  13. O.H. Andersson, K.H. Karlsson, J. Non-Cryst. Solids 129, 145 (1991). doi:10.1016/0022-3093(91)90090-S

    Article  CAS  Google Scholar 

  14. X. Liu, C. Ding, P.K. Chu, Biomaterials 25, 1755 (2004). doi:10.1016/j.biomaterials.2003.08.024

    Article  CAS  Google Scholar 

  15. P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, J. Am. Ceram. Soc. 75, 2094 (1992). doi:10.1111/j.1151-2916.1992.tb04470.x

  16. M. Tanahashi, T. Matsuda, J. Biomed. Mater. Res. 34(3), 305 (1997). doi:10.1002/(SICI)1097-4636(19970305)34:3<305::AID-JBM5>3.0.CO;2-O

    Article  CAS  Google Scholar 

  17. S. Matsuya, Y. Matsuya, M. Ohta, Dent. Mater. J. 18(2), 155 (1999)

    CAS  Google Scholar 

  18. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi:10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  19. S. Yu, K.P. Hariram, R. Kumar, P. Cheang, K.K. Aik, Biomaterials 26, 2343 (2005). doi:10.1016/j.biomaterials.2004.07.028

    Article  CAS  Google Scholar 

  20. Y.X. Pang, X. Bao, J. Eur. Ceram. Soc. 23, 1697 (2003). doi:10.1016/S0955-2219(02)00413-2

    Article  CAS  Google Scholar 

  21. G. Xu, I.A. Aksay, J.T. Groves, J. Am. Chem. Soc. 123(10), 2196 (2001). doi:10.1021/ja002537i

    Article  CAS  Google Scholar 

  22. S.J. Gadaleta, E.P. Paschalis, F. Betts, R. Mendelsohn, A.L. Boskey, Calcif. Tissue Int. 58(1), 9 (1996). doi:10.1007/BF02509540

    Article  CAS  Google Scholar 

  23. A.C. Tas, Biomaterials 21, 1429 (2000). doi:10.1016/S0142-9612(00)00019-3

    Article  CAS  Google Scholar 

  24. Y. Li, T. Wiliana, K.C. Tam, Mater. Res. Bull. 42, 820 (2007). doi:10.1016/j.materresbull.2006.08.027

    Article  CAS  Google Scholar 

  25. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, Chichester, 2001)

    Google Scholar 

  26. A.M. Young, Biomaterials 23, 3289 (2002). doi:10.1016/S0142-9612(02)00092-3

    Article  CAS  Google Scholar 

  27. A.M. Young, S.A. Rafeeka, J.A. Howlett, Biomaterials 25, 823 (2004). doi:10.1016/S0142-9612(03)00599-4

    Article  CAS  Google Scholar 

  28. D. Tadic, F. Peters, M. Epple, Biomaterials 23, 2553 (2002). doi:10.1016/S0142-9612(01)00390-8

    Article  CAS  Google Scholar 

  29. J. Nourmohammadi, R. Salarian, M. Solati-Hashjin, F. Moztarzadeh, Ceram. Int. 33, 557 (2007). doi:10.1016/j.ceramint.2005.11.017

    Article  CAS  Google Scholar 

  30. S. Matsuya, T. Maeda, M. Ohta, J. Dent. Res. 75(12), 1920 (1996)

    Article  CAS  Google Scholar 

  31. F. Branda, F. Arcobello-Varlese, A. Costantini, G. Luciani, Biomaterials 23, 4029 (2002). doi:10.1016/S0142-9612(01)00173-9

    Article  Google Scholar 

  32. T. Kawai, C. Ohtsuki, M. Kamitakahara, T. Miyazaki, M. Tanihara, Y. Sakaguchi et al., Biomaterials 25, 4529 (2004). doi:10.1016/j.biomaterials.2003.11.039

    Article  CAS  Google Scholar 

  33. O.H. Andersson, K.H. Karlsson, J. Non-Cryst. Solids 129, 145 (1991). doi:10.1016/0022-3093(91)90090-S

    Article  CAS  Google Scholar 

  34. H. Kim, F. Miyaji, T. Kokubo, C. Ohtsuki, T. Nakamura, J. Am. Ceram. Soc. 78(9), 2405 (1995). doi:10.1111/j.1151-2916.1995.tb08677.x

    Article  CAS  Google Scholar 

  35. S. Sarig, Bone 35, 108 (2004). doi:10.1016/j.bone.2004.02.020

    Article  CAS  Google Scholar 

  36. L.L. Hench, J. Wilson, An Introduction to Bioceramics (World Scientific, London, 1993), p. 143

    Google Scholar 

  37. F. Barrere, M.M.E. Snel, C.A. Blitterswijk, K. De Groot, P. Layrolle, Biomaterials 25, 2901 (2004). doi:10.1016/j.biomaterials.2003.09.063

    Article  CAS  Google Scholar 

  38. K.L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhamak Nourmohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nourmohammadi, J., Sadrnezhaad, S.K. & Behnam Ghader, A. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement. J Mater Sci: Mater Med 19, 3507–3514 (2008). https://doi.org/10.1007/s10856-008-3501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3501-7

Keywords

Navigation