Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 11, pp 3319–3326 | Cite as

Zn2+ release behavior and surface characteristics of Zn/LDPE nanocomposites and ZnO/LDPE nanocomposites in simulated uterine solution

  • Zhihong Yang
  • Changsheng Xie
  • Xianping Xia
  • Shuizhou Cai
Article

Abstract

To decrease the side effects of the existing copper-bearing intrauterine devices, the zinc/low-density polyethylene (Zn/LDPE) nanocomposite and zinc-oxide/low-density polyethylene (ZnO/LDPE) nanocomposite have been developed in our research for intrauterine devices (IUDs). In this study, the influences of preparation methods of nanocomposites and particle sizes of zinc and zinc oxide on Zn2+ release from composites incubated in simulated uterine solution were investigated. All release profiles are biphasic: an initial rapid release phase is followed by a near zero-order release period. Zn2+ release rates of nanocomposites prepared by compressing moulding are higher than those of the nanocomposites prepared by hot-melt extrusing. Compared with Zn2+ release from the microcomposites, the release profiles of the nanocomposites exhibit a sharp decrease in Zn2+ release rate in the first 18 days, an early onset of the zero-order release period and a high release rate of Zn2+ at the later stage. The microstructure of the Zn/LDPE sample and the ZnO/LDPE sample after being incubated for 200 days was characterized by SEM, XRD and EDX techniques. The results show that the dissolution depth of ZnO/LDPE nanocomposite is about 60 μm. Lots of pores were formed on the surface of the Zn/LDPE sample and ZnO/LDPE sample, indicating that these pores can provide channels for the dissolution of nanoparticles in the matrix. The undesirable deposits that are composed of ZnO are only detected on the surface of Zn/LDPE nanocomposite, which may increase the risk of side effects associated with IUDs. It can be expected that ZnO/LDPE nanocomposite is more suitable for IUDs than Zn/LDPE nanocomposite.

References

  1. 1.
    E.A. Wright, A.O. Aisien, Int. J. Gynecol. Obstet. 28, 133 (1989)CrossRefGoogle Scholar
  2. 2.
    D.A. Grimes, Contraception. 36, 97 (1987)CrossRefGoogle Scholar
  3. 3.
    B. Dahlberg, S. Kullander, J. Ursing, A. Forsgren, Contraception 20, 71 (1979)CrossRefGoogle Scholar
  4. 4.
    M. Toppozada, Contraception 36, 145 (1987)CrossRefGoogle Scholar
  5. 5.
    E.C. Yeiser, A.A. Lerant, R.M. Casto, C.W. Levenson, Neurosci. Lett. 277, 75 (1999)CrossRefGoogle Scholar
  6. 6.
    P.W. Jones, D.W. Taylor, D.R. Williams, J. Inorg. Biochem. 81, 1 (2000)CrossRefGoogle Scholar
  7. 7.
    P.W.R. Osinaga, R.H.M. Grande, R.Y. Ballester, M.R.L. Simionato, C.R.M.D. Rodrigues, A. Muench, Dent Mater 19, 212 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Top, S. Ulku, Appl. Clay Sci. 27, 13 (2004)CrossRefGoogle Scholar
  9. 9.
    M.D.K. Hagenfeldt, Contraception 6, 37 (1972)CrossRefGoogle Scholar
  10. 10.
    B. Daunter, E.M. Chantler, M. Elstein, Contraception 15, 543 (1977)CrossRefGoogle Scholar
  11. 11.
    J. Zipper, M. Medel, R. Prager, Am. J. Obstet. Gynecol. 105, 529 (1969)Google Scholar
  12. 12.
    M. Medel, C. Espinoza, J. Zipper, R. Prager, Contraception 6, 241 (1972)CrossRefGoogle Scholar
  13. 13.
    W.L. Williams, Contraception 22, 659 (1980)CrossRefGoogle Scholar
  14. 14.
    O. Yamamoto, Int. J. Inorg. Mater. 3, 643 (2001)CrossRefGoogle Scholar
  15. 15.
    C. Li, G.D. Hu, Y.H. He, Chin. J. Pro. Eng. 3, 34 (2003)Google Scholar
  16. 16.
    Z.H. Yang, C.S. Xie, Colloids Surf. B. 47, 140 (2006)CrossRefGoogle Scholar
  17. 17.
    S.Z. Cai, X.P. Xia, C.S. Xie, Biomaterials. 26, 2671 (2005)CrossRefGoogle Scholar
  18. 18.
    R. Gumy, E. Doelker, N.A. Peppas, Biomaterials. 3, 27 (1982)CrossRefGoogle Scholar
  19. 19.
    I. Caraballo, M. Fernández-Arévalo, M.A. Holgado, A.M. Rabasco, Int. J. Pharm. 96, 17 (1993)CrossRefGoogle Scholar
  20. 20.
    I. Caraballo, M. Millán, A.M. Rabasco, H. Leuenberger, Pharm. Acta. Helv. 71, 335 (1996)CrossRefGoogle Scholar
  21. 21.
    C.R. Young, J.J. Koleng, J.W. Mcginity, Int. J. Pharm. 242, 87 (2002)CrossRefGoogle Scholar
  22. 22.
    M.M. Crowley, B. Schroeder, A. Fredersdorf, S. Obara, M. Talarico, S. Kucera, J.W. Mcginity, Int. J. Pharm. 269, 509 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Millán, I. Caraballo, Int. J. Pharm. 310, 168 (2006)CrossRefGoogle Scholar
  24. 24.
    T. Higuchi, J. Pharm. Sci. 52, 1145 (1963)CrossRefGoogle Scholar
  25. 25.
    J.M. Bastidas, E. Cano, N. Mora, Contraception 61, 395 (2000)CrossRefGoogle Scholar
  26. 26.
    K. Patai, L. Dévényi, R. Zelkó, Contraception 70, 149 (2004)CrossRefGoogle Scholar
  27. 27.
    M. Rizk, N. Shaban, I. Medhat, Y.M.E. Dien, M.A. Ollo, Contraception 42, 643 (1990)CrossRefGoogle Scholar
  28. 28.
    K. Patai, M. Berényi, M. Sipos, B. Noszál, Contraception 58, 305 (1998)CrossRefGoogle Scholar
  29. 29.
    E.E.F. El-sherbini, S.S.A. El-rehim, Corros. Sci. 42, 785 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Zhihong Yang
    • 1
    • 2
  • Changsheng Xie
    • 2
  • Xianping Xia
    • 2
  • Shuizhou Cai
    • 2
  1. 1.Faculty of Material Science and Chemical EngineeringChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.State Key Laboratory of Material Processing and Die & Mould Technology, Department of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations