Skip to main content

Advertisement

Log in

Mulberry non-engineered silk gland protein vis-à-vis silk cocoon protein engineered by silkworms as biomaterial matrices

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Silk fibroin from silk gland of Bombyx mori 5th instar larvae was utilized to fabricate films, which may find possible applications as two-dimensional matrices for tissue engineering. Bombyx mori cocoon fibroin is well characterized as potential biomaterial by virtue of its good mechanical strength, water stability, thermal properties, surface roughness and biocompatibility. The present study aims to characterize the biophysical, thermal, mechanical, rheological, swelling properties along with spectroscopic analysis, surface morphology and biocompatibility of the silk gland fibroin films compared with cocoon fibroin. Fibroin solutions showed increased turbidity and shear thinning at higher concentration. The films after methanol treatment swelled moderately and were less hydrophilic compared to the untreated. The spectroscopic analysis of the films illustrated the presence of various amide peaks and conformational transition from random coil to β sheet on methanol treatment. X-ray diffraction studies also confirmed the secondary structure. Thermogravimetric analysis showed distinct weight loss of the films. The films were mechanically stronger and AFM studies showed surfaces were rougher on methanol treatment. The matrices were biocompatible and supported L929 mouse fibroblast cell growth and proliferation. The results substantiate the silk gland fibroin films as potential biomaterial matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

SF:

Silk fibroin protein

BMG:

Bombyx mori gland

BMC:

Bombyx mori cocoon

FTIR:

Fourier transform infrared

XRD:

X-ray diffraction

AFM:

Atomic force microscopy

References

  1. K. Grzelak, Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 110, 671 (1995)

    Article  CAS  Google Scholar 

  2. T. Gamo, Biochem. Genet. 20, 165 (1982)

    Article  CAS  Google Scholar 

  3. J.J. Michaille, P. Couble, J.C. Prudhomme, A. Garel, Biochimie 68, 1165 (1986)

    Article  CAS  Google Scholar 

  4. S. Inoue, K. Tanaka, F. Arisakaffi, J. Biol. Chem. 275, 40517 (2000)

    Article  CAS  Google Scholar 

  5. S. Inoue, J. Magoshi, T. Tanaka, Y. Magoshi, M. Becker, J. Polym. Sci., Part B, Polym. Phys. 38, 1436 (2000)

    Article  CAS  Google Scholar 

  6. K. Hu, Q. Lv, F. Cui, Q. Feng, X. Kong, H. Wang, J. Bioact. Compat. Polym. 21, 23 (2006)

    Article  CAS  Google Scholar 

  7. T. Arai, G. Freddi, R. Innocenti, M. Tsukada, J. Appl. Polym. Sci. 91, 2383 (2004)

    Article  CAS  Google Scholar 

  8. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, Biomaterials 24, 401 (2003)

    Article  CAS  Google Scholar 

  9. C. Vepari, D.L. Kaplan, Prog. Polym. Sci. 32, 991 (2007)

    Article  CAS  Google Scholar 

  10. S. Hofmann, C.T. Wong Po Foo, F. Rossetti, M. Textor, G. Vunjak-Novakovic, D.L. Kaplan, H.P. Merkle, L. Meinel, J. Control Release 111, 219 (2006)

    Article  CAS  Google Scholar 

  11. M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, M. Tschon, R. Giardino, C. Migliaresi, Biomaterials 26, 3527 (2005)

    Article  CAS  Google Scholar 

  12. T. Hino, M. Tanimoto, S. Shimabayashi, J. Colloid Interface Sci. 266, 68 (2003)

    Article  CAS  Google Scholar 

  13. J. Zhu, H. Shao, X. Hu, Int. J. Biol. Macromol. 41, 469 (2007)

    Article  CAS  Google Scholar 

  14. A. Sugihara, K. Sugiura, H. Morita, T. Ninagawa, K. Tubouchi, R. Tobe, Proc. Soc. Exp. Biol. Med. 225, 58 (2000)

    Article  CAS  Google Scholar 

  15. Y. Wang, D.J. Blasioli, H.J. Kim, H.S. Kim, D.L. Kaplan, Biomaterials 27, 4434 (2006)

    Article  CAS  Google Scholar 

  16. S. Rammensee, D. Huemmerich, K.D. Hermanson, T. Scheibel, A.R. Bausch, Appl. Phys. A 82, 261 (2006)

    Article  CAS  Google Scholar 

  17. X.X. Feng, L.L. Zhang, J.Y. Chen, Y.H. Guo, H.P. Zhang, C.I. Jia, Int. J. Biol. Macromol. 40, 105 (2007)

    Article  CAS  Google Scholar 

  18. S. Putthanarat, S. Zarkoob, J. Magoshi, J.A. Chen, R.K. Eby, M. Stone, W.W. Adams, Polymer 43, 3405 (2002)

    Article  CAS  Google Scholar 

  19. N. Agarwal, D.A. Hoagland, R.J. Farris, J. Appl. Polym. Sci. 63, 401 (1997)

    Article  CAS  Google Scholar 

  20. Y.Y. Sun, Z.Z. Shao, M.H. Ma, P. Hu, Y.S. Liu, T.Y. Yu, J. Appl. Polym. Sci. 65, 959 (1997)

    Article  CAS  Google Scholar 

  21. M.Z. Li, Z.Y. Wu, C.S. Zhang, S.Z. Lu, H.J. Yan, D. Huang, H.L. Ye, J. Appl. Polym. Sci. 79, 2192 (2001)

    Article  Google Scholar 

  22. A.B. Mathur, A. Tonelli, T. Rathke, S. Hudson, Biopolymer 42, 61 (1997)

    Article  CAS  Google Scholar 

  23. S. Gobin, V.E. Froude, A.B. Mathur, J. Biomed. Mater. Res. A. 74, 465 (2005)

    Google Scholar 

  24. K.E. Park, S.Y. Jung, S.J. Lee, B.M. Min, W.H. Park, Int. J. Biol. Macromol. 38, 165 (2006)

    Article  CAS  Google Scholar 

  25. X. Wang, H.J. Kim, P. Xu, A. Matsumoto, D.L. Kaplan, Langmuir 21, 11335 (2005)

    Article  CAS  Google Scholar 

  26. R. Nazarov, H.J. Jin, D.L. Kaplan, Biomacromolecules 5, 718 (2004)

    Article  CAS  Google Scholar 

  27. R. Valluzzi, S.P. Gido, W. Muller, D.L. Kaplan, Int. J. Biol. Macromol. 24, 237 (1999)

    Article  CAS  Google Scholar 

  28. X. Wang, H.J. Kim, P. Xu, A. Matsumoto, D.L. Kaplan, Langmuir 21, 11335 (2005)

    Article  CAS  Google Scholar 

  29. J.S. Hwang, J.S. Lee, T.W. Goo, E.Y. Yun, K.S. Lee, Y.S. Kim, B.R. Jin, S.M. Lee, K.Y. Kim, S.W. Kang, D.S. Suh, Biotech. Lett. 231, 1321 (2001)

    Article  Google Scholar 

  30. W. Wang, S. Zhu, L. Wang, F. Yu, W. Shen, J. Biosci. 30, 605 (2005)

    Article  CAS  Google Scholar 

  31. B.B. Mandal, S.C. Kundu, Biotechnol.Bioeng. in press

  32. H. Shiozaki, Y. Tanaka, Angewandte Makromolekulare Chemie 64, 1 (2003)

    Article  Google Scholar 

  33. M.L. Gimenes, L. Liu, X. Feng, J. Memb. Sci. 29, 71 (2007)

    Article  CAS  Google Scholar 

  34. X. Wang, X. Hu, A. Daley, O. Rabotyagova, P. Cebe, D.L. Kaplan, J. Control Release 121, 190 (2007)

    Article  CAS  Google Scholar 

  35. O. Bayraktar, Ö. Malay, Y. Özgarip, A. batigün, Eur. J. Pharm. Biopharm. 60, 373 (2005)

    Article  CAS  Google Scholar 

  36. H.J. Jin, J. Park, V. Karageorgiou, U.J. Kim, R. Valluzzi, P. Cebe, D.L. Kaplan, Adv. Func. Mater. 15, 1241 (2005)

    Article  CAS  Google Scholar 

  37. ASTM, Annual Book of ASTM Standards. (Philadelphia, PA, USA, 1993), p. 59

  38. O. Malay, O. Bayraktar, A. Batiguin, Int. J. Biol. Macromol. 40, 387 (2007)

    Article  CAS  Google Scholar 

  39. D.L. Kaplan, S. Fossey, C.M. Mello, Mat. Res. Soc. Bull. 17, 41 (1992)

    CAS  Google Scholar 

  40. C.Z. Zhou, F. Confalonieri, N. Medina, Y. Zivanovic, C. Esnault, T. Yang, M. Jacquet, J. Janin, M. Duguet, R. Perasso, Z.G. Li, Nucleic Acids Res. 28, 2413 (2000)

    Article  CAS  Google Scholar 

  41. J.H. Yeo, K.G. Lee, Y.W. Lee, S.Y. Kim, Eur. Polym. J. 39, 1195 (2003)

    Article  CAS  Google Scholar 

  42. M.K. Yoo, H.Y. Kweon, K.G. Lee, H.C. Lee, C.S. Cho, Int. J. Biol. Macromol. 34, 263 (2004)

    Article  CAS  Google Scholar 

  43. I.C. Um, H.Y. Kweon, Y.H. Park, S. Hudson, Int. J. Biol. Macromol. 29, 91 (2001)

    Article  CAS  Google Scholar 

  44. H. Wang, Y. Zhang, H. Shao, X. Hu, Int. J. Biol. Macromol. 36, 66 (2005)

    Article  CAS  Google Scholar 

  45. D.L. Kaplan, S.M. Mello, S. Arcidiacono, S. Fossey, K.W.M. Senecal, Protein Based Materials. (Birkhauser, Boston, 1998), p. 103

  46. H.J. Jin, D.L. Kaplan, Nature 424, 1057 (2003)

    Article  CAS  Google Scholar 

  47. A. Motta, L. Fambri, C. Migliaresi, Macromol. Chem. Phys. 203, 1658 (2002)

    Article  CAS  Google Scholar 

  48. N. Miniura, S. Aiba, M. Higuchi, Biochem. Biophys. Res. Comm. 208, 511 (1995)

    Article  Google Scholar 

  49. M. Tsukada, Y. Gotoh, M. Nagura, N. Minoura, N. Kasai, G. Freddi, J. Polym. Sci. B: Polym. Phys. 32, 961 (1994)

    Article  CAS  Google Scholar 

  50. J. Zhu, H. Shao, X. Hu, Int. J. Biol. Macromol. 41, 469 (2007)

    Article  CAS  Google Scholar 

  51. W. Tao, M. Li, C. Zhao, Int. J. Biol. Macromol. 40, 472 (2007)

    Article  CAS  Google Scholar 

  52. T. Iliescu, D. Maniu, V. Chis, F.D. Irimie, C.S. Paizs, M. Tosa, Chem. Phys. 310, 189 (2005)

    Article  CAS  Google Scholar 

  53. M.E. Rousseau, T. Lefèvre, L. Beaulieu, T. Asakura, M. Pézolet, Biomacromolecules 56, 2247–2257 (2004)

    Article  CAS  Google Scholar 

  54. J.W. Van Egmond, Curr. Opin. Colloid Interface Sci. 3, 385 (1998)

    Article  Google Scholar 

  55. X. Chen, D.P. Knight, Z. Shao, F. Vollrath, Polymer 42, 9969 (2001)

    Article  CAS  Google Scholar 

  56. K. Cai, K. Yao, Y. Cui, Z. Yang, X. Li, H. Xie, T. Qing, L. Gao, Biomaterials 23, 1603 (2002)

    Article  CAS  Google Scholar 

  57. A.M. Tellez-Garay, M.Sc. Thesis, Texas A&M University, College Station, TX (1999)

Download references

Acknowledgements

Financial support was obtained from Indo-Australia Biotechnology Fund and Department of Biotechnology, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Kundu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundu, J., Dewan, M., Ghoshal, S. et al. Mulberry non-engineered silk gland protein vis-à-vis silk cocoon protein engineered by silkworms as biomaterial matrices. J Mater Sci: Mater Med 19, 2679–2689 (2008). https://doi.org/10.1007/s10856-008-3398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3398-1

Keywords

Navigation