Skip to main content
Log in

Novel fabrication of nano-rod array structures on titanium and in vitro cell responses

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nano-scale rod arrays of titania were fabricated on titanium surface by a glass phase topotaxy growth (GPT) method, which was featured by an interfacial reaction between sodium tetraborate coating and the preheated metallic titanium at elevated temperature. The samples were characterized by thin-film X-ray diffraction (XRD), scanning electron microscope (SEM), profilometer and contact angle measurement. Thin-film XRD analysis indicated that the nano-rod arrays were composed of pure rutile titania phase. SEM images showed that these rutile rods were 100–200 nm wide and 1–2 μm long. The nano-rod arrays had significantly higher average roughness (P < 0.05) and greater hydrophilicity (P < 0.05) compared to the control. Human embryonic palatal mesenchymal (HEPM) cells were grown to evaluate in vitro cell responses to the nano-rod array structures in terms of cell attachment and proliferation. An equivalent high attachment rate of 94% was observed after 4-h incubation, but a lower proliferation rate was observed on the nano-rod array after 12-day culture compared to the control (P < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.F. Chauvy, C. Mador, D. Landolt, Surf. Coat. Technol. 110, 48 (1998)

    Article  CAS  Google Scholar 

  2. C. Hallgren, H. Reimers, D. Chakarov, J. Gold, A. Wennerberg, Biomaterials 24, 701 (2003)

    Article  CAS  Google Scholar 

  3. J. Lincks, B.D. Boyan, C.R. Blanchard, C.H. Lohmann, Y. Liu, D.L. Cochran, D.D. Dean, Z. Schwartz, Biomaterials 19, 2219 (1998)

    Article  CAS  Google Scholar 

  4. Z. Schwartz, B.D. Boyan, J. Cell Biochem. 56, 340 (1994)

    Article  CAS  Google Scholar 

  5. K. Anslme, M. Bigerelle, B. Noel, A. Iost, P. Hardouin, J. Biomed. Mater. Res. 60, 529 (2002)

    Article  Google Scholar 

  6. R.G. Flemming, C.J. Murphy, G.A. Abrams, S.L. Goodman, P.F. Nealy, Biomaterials 20, 573 (1999)

    Article  CAS  Google Scholar 

  7. M.J. Dalby, D. Giannaras, M.O. Riehle, N. Gaegaard, S. Affrossman, A.S.G. Curtis, Biomaterials 25, 77 (2004)

    Article  CAS  Google Scholar 

  8. N.R. Washburna, K.M. Yamadab, C.G. Simon, S.B. Kennedya, E.J. Amisa, Biomaterials 25, 1215 (2004)

    Article  Google Scholar 

  9. H.J. Kim, S.H. Him, M.S. Him, E.J. Lee, H.G. Og, W.M. Oh, S.W. Park, W.J. Kim, G.J. Lee, N.G. Choi, J.T. Koh, D.B. Dinh, R.R. Hardin, K. Johnson, V.L. Sylvia, J.P. Schmitz, D.D. Dean, J. Biomed. Mater. Res. 74A, 366 (2005)

    Article  CAS  Google Scholar 

  10. C. Ohtsuki, H. Iida, S. Hayakawa, A. Osaka, J. Biomed. Mater. Res. 35, 39 (1997)

    Article  CAS  Google Scholar 

  11. Q. Liu, J. Ding, F.K.M. Stephanie, L. Wunder, G.R. Baran, Biomaterials 23, 3103 (2002)

    CAS  Google Scholar 

  12. Y. Liu, K. Tsuru, S. Hayakawa, A. Osaka, J. Ceram. Soc. Jpn. 112, 567 (2004)

    Article  CAS  Google Scholar 

  13. S. Hayakawa,Y. Liu, K. Tsuru, K. Okamoto, A. Osaka, Nanoscale Materials Science in Biology and Medicine. Materials Research Society Symposia Proceedings, vol. 845 (Warrendale, PA, 2005) p. AA6.9

  14. Y. Liu, K. Tsuru, S. Hayakawa, A. Osaka, J. Ceram. Soc. Jpn. 112, 453 (2004)

    Google Scholar 

  15. Y. Liu, K. Tsuru, S. Hayakawa, A. Osaka, J. Ceram. Soc. Jpn. 112, 634 (2004)

    Article  CAS  Google Scholar 

  16. I.N. Anikin, I.I. Naumova, G.V. Ruyantseva, Sov. Phys. Crystallogr. 10, 172 (1965)

    Google Scholar 

  17. A.J. Easteal, D.J. Udy, J. Inorg. Nucl. Chem. 35, 3041 (1973)

    Article  CAS  Google Scholar 

  18. F. Kawanura, I. Yasui, I. Sunagawa, J. Cryst. Growth 233, 517 (2001)

    Article  Google Scholar 

  19. J.S. Berkes, W.B. White, R. Roy, J. Appl. Phys. 36, 3276 (1965)

    Article  CAS  Google Scholar 

  20. R.N. Wenzel, Int. Eng. Chem. 28, 988 (1936)

    Article  CAS  Google Scholar 

  21. K. Tomas, S. Cook, J. Biomed. Mater. Res. 19, 875 (1981)

    Article  Google Scholar 

  22. K. Bowers, J. Keller, B. Randolph, D. Wick, C. Michaels, Int. J. Oral Maxillofac. Implants. 7, 302 (1992)

    CAS  Google Scholar 

  23. T.J. Webster, J.U. Ejiofor, Biomaterials 25, 4731 (2004)

    Article  CAS  Google Scholar 

  24. T.J. Webster, E.L. Hellenmeyer, R.L. Price, Biomaterials 26, 953 (2005)

    Article  CAS  Google Scholar 

  25. J.Y. Matin, Z. Schwartz, T.W. Hummert, D.M. Schrub, J. Simpson, J. Lankford, D.D. Dean, D.L. Cochran, B.D. Boyan, J. Biomed. Mater. Res. 29, 389 (1995)

    Article  Google Scholar 

  26. S. Lossdofer, Z. Schwartz, L. Wang, C.H. Lohmann, J.D. Turner, M. Wieland, D.L. Cochran, B.D. Boyan, J. Biomed. Mater. Res. 70A, 361 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Chen, W., Yang, Y. et al. Novel fabrication of nano-rod array structures on titanium and in vitro cell responses. J Mater Sci: Mater Med 19, 2735–2741 (2008). https://doi.org/10.1007/s10856-008-3396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3396-3

Keywords

Navigation