Skip to main content
Log in

A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In many biomedical applications, the performance of biomaterials depends largely on their degradation behavior. For instance, in drug delivery applications, the polymeric carrier should degrade under physiological conditions slowly releasing the encapsulated drug. The aim of this work was, therefore, to develop an enzymatic-mediated degradation carrier system for the delivery of differentiation agents to be used in bone tissue engineering applications. For that, a polymeric blend of starch with polycaprolactone (SPCL) was used to produce a microparticle carrier for the controlled release of dexamethasone (DEX). In order to investigate the effect of enzymes on the degradation behavior of the developed system and release profile of the encapsulated osteogenic agent (DEX), the microparticles were incubated in phosphate buffer solution in the presence of α-amylase and/or lipase enzymes (at physiological concentrations), at 37°C for different periods of time. The degradation was followed by gravimetric measurements, scanning electron microscopy (SEM) and Fourier transformed infrared (FTIR) spectroscopy and the release of DEX was monitored by high performance liquid chromatography (HPLC). The developed microparticles were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with degradation time when compared with control samples (incubation in buffer only). For longer degradation times, the diameter of the microparticles decreased significantly and a highly porous matrix was obtained. The in vitro release studies showed a sustained release pattern with 48% of the encapsulated drug being released for a period of 30 days. As the degradation proceeds, it is expected that the remaining encapsulated drug will be completely released as a consequence of an increasingly permeable matrix and faster diffusion of the drug. Cytocompatibility results indicated the possibility of the developed microparticles to be used as biomaterial due to their reduced cytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.A. Silva, P. Ducheyne, R.L. Reis, J. Tissue Eng. Regen. Med. 1, 4 (2007)

    Article  CAS  Google Scholar 

  2. A. Tuncel, K. Ecevit, K. Kesenci, E. Piskin, J. Polym. Sci. A: Polym. Chem. 34, 45 (1996)

    Article  CAS  Google Scholar 

  3. A. Kamyshny, S. Magdassi, Colloids Surf. B Biointerfaces 18, 13 (2000)

    Article  CAS  Google Scholar 

  4. M. Shinkai, J. Biosci. Bioeng. 94, 606 (2002)

    CAS  Google Scholar 

  5. G.A. Silva, O.P. Coutinho, P. Ducheyne, R.L. Reis, J. Tissue Eng. Regen. Med. 1, 97 (2007)

    Article  CAS  Google Scholar 

  6. G.A. Silva, A. Pedro, F.J. Costa, N.M. Neves, O.P. Coutinho, R.L. Reis, Mater. Sci. Eng. C. 25, 237 (2005)

    Article  Google Scholar 

  7. P.B. Malafaya, G.A. Silva, R.L. Reis, Adv. Drug Deliv. Rev. 59, 207 (2007)

    Article  CAS  Google Scholar 

  8. M.C. Bissery, in Microspheres and Drug Therapy: Pharmaceutical, Immunological and Medical Aspects, ed. by S.S. Davis, L. Illum, J.G. McVie, E. Tomlinson (Elsevier, New York, 1984), p. 217

    Google Scholar 

  9. S.P. Baldwin, W.M. Saltzman, Adv. Drug Deliv. Rev. 33, 71 (1998)

    Article  CAS  Google Scholar 

  10. R.E. Eliaz, J. Kost, J. Biomed. Mater. Res. 50, 388 (2000)

    Article  CAS  Google Scholar 

  11. H.S. Azevedo, R.L. Reis, in Biodegradable Systems in Tissue Engineering and Regenerative Medicine, ed. by Reis, S. Roman (CRC Press, New York, 2005), p. 178

  12. A.P. Marques, R.L. Reis, J.A. Hunt, Biomaterials 23, 1471 (2002)

    Article  CAS  Google Scholar 

  13. P.B. Malafaya, C. Elvira, A. Gallardo, J. San Roman, R.L. Reis, J. Biomater. Sci. Polym. Ed. 12, 1227 (2001)

    Article  CAS  Google Scholar 

  14. G.A. Silva, F.J. Costa, N.M. Neves, O.P. Coutinho, A.C.P. Dias, R.L. Reis, J. Biomed. Mater. Res. A 73, 234 (2005)

    CAS  Google Scholar 

  15. L.F. Boesel, J.F. Mano, C. Elvira, J. San Roman, R.L. Reis, in Biodegradable Polymers and Plastics, ed. by E. Chiellini, R. Solaro (Kluwer Academic/Plenum Press, New York, 2003), p. 243

    Google Scholar 

  16. M.E. Gomes, V.I. Sikavitsas, E. Behravesh, R.L. Reis, A.G. Mikos, J. Biomed. Mater. Res. A 67, 87 (2003)

    Article  Google Scholar 

  17. R.L. Reis, A.M. Cunha, in Encyclopedia of Materials: Science and Technology, vol. 11, ed. by K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Elsevier, New York, 2001), p. 8810

  18. H.S. Azevedo, F.M. Gama, R.L. Reis, Biomacromolecules 4, 1703 (2003)

    Article  CAS  Google Scholar 

  19. S.C. Mendes, R.L. Reis, Y.P. Bovell, A.M. Cunha, C.A. van Blitterswijk, J.D. de Bruijn, Biomaterials 22, 2057 (2001)

    Article  CAS  Google Scholar 

  20. N.M. Neves, A. Kouyumdzhiev, R.L. Reis, Mater. Sci. Eng. C 25, 195 (2005)

    Article  Google Scholar 

  21. E.R. Balmayor, K. Tuzlakoglu, H.S. Azevedo, R.L. Reis, in Proceedings of the European Materials Research Society Fall Meeting, Warsaw, Poland, September 2006, ed. by Conference Engine Pielaszek Research, Poland, 2006, p. 219

  22. G.A. Silva, F.J. Costa, N.M. Neves, O.P. Coutinho, A.C.P. Dias, R.L. Reis, J. Biomed. Mater. Res. 73, 234 (2005)

    Article  CAS  Google Scholar 

  23. T.K. Ghose, Pure Appl. Chem. 59, 257 (1987)

    Article  CAS  Google Scholar 

  24. J. Zeltinger, J.K. Sherwood, D.A. Graham, R. Mueller, L.G. Griffith, Tissue Eng. 7, 557 (2001)

    Article  CAS  Google Scholar 

  25. A.J. Salgado, O.P. Coutinho, R.L. Reis, Tissue Eng. 10, 465 (2004)

    Article  CAS  Google Scholar 

  26. R.L. Reis, S.C. Mendes, A.M. Cunha, M. Bevis, Polym. Int. 43, 347 (1997)

    Article  CAS  Google Scholar 

  27. R. Langer, N.A. Peppas, AIChE J. 49, 2990 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E. R. Balmayor is beneficiary of Marie Curie PhD grant under the Alea Jacta EST Project (MEST-CT-2004-008104). This work was partially supported by the European Network of excellence (NoE) EXPERTISSUES (NMP3-CT-2004-500283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Rosado Balmayor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balmayor, E.R., Tuzlakoglu, K., Marques, A.P. et al. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. J Mater Sci: Mater Med 19, 1617–1623 (2008). https://doi.org/10.1007/s10856-008-3378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3378-5

Keywords

Navigation