Skip to main content
Log in

Toward modulating the architecture of hydrogel scaffolds: curtains versus channels

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The design, development and evaluation of biomaterials that can sustain life or restore a certain body function, is a very important and rapidly expanding field in materials science. A key issue in the development of biomaterials is the design of a material that mimics the natural environment of cells. In the present work, we have therefore developed hydrogel materials that contain both a protein (gelatin) and a glycosaminoglycan (chondroitin sulphate) component. To enable a permanent crosslinking, gelatin and chondroitin sulphate were first chemically modified using methacrylic anhydride. Hydrogels containing modified gelatin (gel-MOD) and/or chondroitin sulphate (CS-MOD) were cryogenically treated as optimised earlier for gel-MOD based hydrogels (Van Vlierberghe et al., Biomacromolecules 8:331–337, 2007). The cryogenic treatment leads to tubular pores for gel-MOD based systems. For CS-MOD based hydrogels and hydrogels containing both gel-MOD and CS-MOD, a curtain-like architecture (i.e. parallel plates) was observed, depending on the applied CS-MOD concentration. In our opinion, this is the first paper in which such well-defined scaffold architectures have been obtained without using rapid prototyping techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.W. Kang, Y. Tabata, Y. Ikada, Biomaterials 20, 1339 (1999)

    Article  CAS  Google Scholar 

  2. F.J. O’brien, B.A. Harley, I.V. Yannas, L. Gibson, Biomaterials 25, 1077 (2004)

    Article  CAS  Google Scholar 

  3. S.M. Tosh, A.G. Marangoni, F.R. Hallett, I.J. Britt, Food Hydrocolloids 17, 503 (2003)

    Article  CAS  Google Scholar 

  4. J. Adler-Nissen, in Enzymic hydrolysis of food proteins (Elsevier Applied Science Publishers Ltd., London and New York, 1985)

    Google Scholar 

  5. A.G. Ward, A. Courts, in The science and technology of gelatin (Academic Press, London, New York and San Francisco, 1977)

  6. R. Narayani, K.P. Rao, Int. J. Pharm. 128, 261 (1996)

    Article  CAS  Google Scholar 

  7. K.B. Djagny, Z. Wang, S.Y. Xu, Crit. Rev. Food Sci. Nutr. 41, 481 (2001)

    Article  CAS  Google Scholar 

  8. P. Dubruel, R. Unger, S. Vanvlierberghe, V. Cnudde, P.J.S. Jacobs, E. Schacht, C.J. Kirkpatrick, Biomacromolecules 8, 338 (2007)

    Article  CAS  Google Scholar 

  9. A.K. Bajpai, J. Choubey, J. Macromol. Sci.-Pure Appl. Chem. A42, 253 (2005)

    Article  CAS  Google Scholar 

  10. A.J. Kuijpers, P.B. Van Wachem, M.J.A. Van Luyn, L.A. Brouwer, G.H.M. Engbers, J. Krijgsveld, S.A.J. Zaat, J. Dankert, J. Feijin, Biomaterials 21, 1763 (2000)

    Article  CAS  Google Scholar 

  11. R.L. Jackson, S.J. Busch, A.D. Cardin, Physiol. Rev. 71, 481 (1991)

    CAS  Google Scholar 

  12. C.H. Chang, T.F. Kuo, C.C. Lin, C.H. Chou, K.H. Chen, F.H. Lin, H.C. Liu, Biomaterials 27, 1876 (2006)

    Article  CAS  Google Scholar 

  13. C.H. Chang, H.C. Liu, C.C. Lin, C.H. Chou, F.H. Lin, Biomaterials 24, 4853 (2003)

    Article  CAS  Google Scholar 

  14. T.-W. Wang, J.-S. Sun, H.-C. Wu, Y.-H. Tsuang, W.-H. Wang, F.-H. Lin, Biomaterials 27, 5689 (2006)

    Article  CAS  Google Scholar 

  15. T.W. Wang, H.C. Wu, Y.C. Huang, J.S. Sun, F.H. Lin, Artif. Organs 30, 141 (2006)

    Article  CAS  Google Scholar 

  16. T.W. Wang, J.S. Sun, H.C. Wu, Y.H. Tsuang, W.H. Wang, F.H. Lin, Biomaterials 27, 5689 (2006)

    Article  CAS  Google Scholar 

  17. S.H. Yang, P.Q. Chen, Y.F. Chen, F.H. Lin, Artif. Organs 29, 806 (2005)

    Article  CAS  Google Scholar 

  18. S. Vanvlierberghe, V. Cnudde, P. Dubruel, B. Masschaele, A. Cosijns, I. Depaepe, P.J.S. Jacobs, L. Vanhoorebeke, .J.P. Remon, E. Schacht, Biomacromolecules 8, 331 (2007)

    Article  CAS  Google Scholar 

  19. A.I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E.H. Schacht, M. Cornelissen, H. Berghmans, Biomacromolecules 1, 31 (2000)

    Article  Google Scholar 

  20. A. Almond, Carbohydr. Res. 340, 907 (2005)

    Article  CAS  Google Scholar 

  21. J. Seog, D. Dean, B. Rolauffs, T. Wu, J. Genzer, A.H.K. Plaas, A.J. Grodzinsky, C. Ortiz, J. Biomech. 38, 1789 (2005)

    Article  Google Scholar 

  22. R. Landers, U. Hubner, R. Schmelzeisen, R. Mulhaupt, Biomaterials 23, 4437 (2002)

    Article  CAS  Google Scholar 

  23. M. Djabourov, Contemp. Phys. 29, 273 (1988)

    Article  CAS  Google Scholar 

  24. L. Peng, X.R. Cheng, J.W. Wang, D.X. Xu, G. Wang, J. Bioact. Compat. Polym. 21, 207 (2006)

    Article  CAS  Google Scholar 

  25. S. Vanvlierberghe, P. Dubruel, E. Lippens, M. Cornelissen, E. Schacht, J Biomater Sci Polym Ed, Submitted (2008)

Download references

Acknowledgements

The authors would like to acknowledge the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT) for the Ph.D. funding granted to S. Van Vlierberghe, the Alexander von Humboldt Foundation for the financial support under the form of a granted Research Fellowship and the Belgian Research Policy Inter University Attraction Poles (IUAP/PAI-V/03) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Schacht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Vlierberghe, S., Dubruel, P., Lippens, E. et al. Toward modulating the architecture of hydrogel scaffolds: curtains versus channels. J Mater Sci: Mater Med 19, 1459–1466 (2008). https://doi.org/10.1007/s10856-008-3375-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3375-8

Keywords

Navigation