Skip to main content

Advertisement

Log in

Pressureless sintering of dense hydroxyapatite–zirconia composites

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA)–TZP (2.5 mol% Y2O3) containing 2, 5, 7.5 and 10 wt% TZP were prepared using calcium nitrate, diammonium hydrogen orthophosphate, zirconium oxychloride and yttrium nitrate. The composite powder was prepared by a reverse strike precipitation method at a pH of 10.5. The precipitates after aging and washing were calcined at 850°C to yield fine crystallites of HA and TZP. TEM study of the calcined powder revealed that while HA particles had both spherical and cuboidal morphology (∼50–100 nm) the TZP particles were only of spherical nature (∼50 nm). X-ray analysis showed that the calcined powder of all the four composition had only HA and t-ZrO2. Uniaxially compacted samples were sintered in air in the temperature range 1,150–1,250°C. High sintered density (>95% of theoretical) was obtained for composites containing 2 and 5 wt% TZP, while it was 92% for 7.5 wt% and 90% for 10 wt% TZP compositions. X-ray analysis of sintered samples shows that with 2 wt% TZP, the retained phases were only HA and t-ZrO2. However, for 5, 7.5 and 10 wt% TZP addition both TCP and CaZrO3 were also observed along with HA and t-ZrO2. Bending strength was measured by three point bending as well by diametral compression test. While in three point bending, the highest strength was 72 MPa, it was 35.5 MPa for diametral compression. The strength shows a decreasing trend at higher ZrO2 content. SEM pictures show near uniform distribution of ZrO2 in HA matrix. The reduction in sintered density at higher ZrO2 content could be related to difference in the sintering behaviour of HA and ZrO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)

    Article  CAS  Google Scholar 

  2. L.L. Hench, J. Wilson, Science. 226, 630 (1984)

    Article  CAS  Google Scholar 

  3. G. De With, H.J.A. Van Dijk, N. Hattu, K. Prijs, J. Mater. Sci. 16, 1592 (1981)

    Article  Google Scholar 

  4. K. Ioku, S. Somiya, M. Yoshimura, J. Ceram. Soc. Jpn. Int. Ed. 99, 191 (1991)

    Google Scholar 

  5. M. Knepper, B. Milthrop, S. Moricca, J. Mater. Sci. Mater. Med. 9, 589 (1998)

    Article  CAS  Google Scholar 

  6. Y.-M. Kong, S. Kim, H.-E. Kim, J. Am. Ceram. Soc. 82, 2963 (1999)

    Article  CAS  Google Scholar 

  7. Z. Shen, E. Adolfsson, M. Nygren, L. Gao, H. Kawaoka, K. Niihara, Adv. Mater. 13, 214 (2001)

    Article  CAS  Google Scholar 

  8. H.-W. Kim, Y.-H. Koh, B.-H. Yoon, H.-E. Kim, J. Am. Ceram. Soc. 85, 634 (2002)

    Google Scholar 

  9. V.V. Silva, F.S. Lameiras, Mater. Charact. 45, 51 (2000)

    Article  CAS  Google Scholar 

  10. W. Pyda, A. Slosarczyk, M. Haberko, Z. Paszkiewicz, A.R. Kmita, A. Pyda, Key Eng. Mater. 206, 1567 (2002)

    Google Scholar 

  11. E.S. Ahn, N.J. Gleason, J.Y. Ying, J. Am. Ceram. Soc. 88, 3374 (2005)

    Article  CAS  Google Scholar 

  12. N. Thangamani, K. Chinnakalib, F.D. Gnanam, Ceram. Int. 28, 355 (2002)

    Article  CAS  Google Scholar 

  13. S.J. Kalita, S. Bose H.L. Hosick, A. Bandyopadhyay, Biomaterials. 25, 2331 (2005)

    Article  CAS  Google Scholar 

  14. J. Li, L. Hermansson, R. Soremark, J. Mater. Sci.: Mater. Med. 4, 50 (1993)

    Article  CAS  Google Scholar 

  15. D.K. Pattanayak, R. Dash, R.C. Prasad, B.T. Rao, T.R. Rama Mohan, Mater. Sci. Eng. C, doi:10.1016/j.msec.2006.06.021

  16. S. Meejoo, W. Maneeprakorn, P. Winotai, Thermochim. Acta. 447, 115 (2006)

    Article  CAS  Google Scholar 

  17. J.M. Wu, T.S. Yeh, J. Mater. Sci. 23, 3771 (1988)

    Article  CAS  Google Scholar 

  18. M.S. Kaliszewski, A.H. Heuer, J. Am. Ceram. Soc. 73, 1504 (1990)

    Article  CAS  Google Scholar 

  19. N.Y. Mostafa, Mater. Chem. Phys. 94, 333 (2005)

    Article  CAS  Google Scholar 

  20. J. Li, H. Liao, L. Hermansson, Biomaterials 17, 1787 (1996)

    Article  CAS  Google Scholar 

  21. D.C. Tancred, A.J. Carr, B.A.O. McCormack, J. Mater. Sci: Mater. Med. 12, 81 (2001)

    Article  CAS  Google Scholar 

  22. B.K. Moon, D.H. Choi, R.J. Sung, S.H. Kim, K. Niihara, Mater. Sci. Forum. 486, 101 (2005)

    Google Scholar 

  23. X. Miao, Y. Chen, H. Guo, K.A. Khor, Ceram. Int. 30, 1793 (2004)

    Article  CAS  Google Scholar 

  24. H.W. Kim, Y.J. Noh, Y.H. Koh, H.E. Kim, H.M. Kim, Biomaterials 23, 4113 (2002)

    Article  CAS  Google Scholar 

  25. N. Kawashima, K. Soetanto, K.I. Watanabe, K. Ono, T. Matsuno, Colloid. Surface. B: Bioint. 10, 23 (1997)

    Article  Google Scholar 

  26. R. Kumar, K.H. Prakash, P. Cheang, K.A. Khor, Acta Materialia. 53, 2327 (2005)

    Article  CAS  Google Scholar 

  27. W. Pyda, A. Slosarczyk, Z. Paszkiewicz, A.R. Kmita, M. Haberko, A. Pyda, Mater. Sci. Forum. 492, 241 (2005)

    Article  Google Scholar 

  28. Z. Evis, R.H. Doremus, Scripta Materialia. 56, 53 (2007)

    Article  CAS  Google Scholar 

  29. A.R. Kmita, A.S. lo sarczyk, Z. Paszkiewicz, C. Paluszkiewicz, J. Mol. Struct. 704, 340 (2004)

    Google Scholar 

  30. R.P. Rana, S.K. Pratihar, S. Bhattacharyya, J. Mater. Sci. 41, 7025 (2006)

    Article  CAS  Google Scholar 

  31. Y. Sun, G. Guo, Z. Wang, H. Guo, Ceram. Int. 32, 951 (2006)

    Article  CAS  Google Scholar 

  32. R. Murugan, S. Ramakrishna, Mater. Lett. 58, 230 (2003)

    Article  CAS  Google Scholar 

  33. S. Meejoo, W. Maneeprakorn, P. Winotai, Thermochim. Acta. 447, 115 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pratihar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, Y., Rana, R.P., Pratihar, S.K. et al. Pressureless sintering of dense hydroxyapatite–zirconia composites. J Mater Sci: Mater Med 19, 2437–2444 (2008). https://doi.org/10.1007/s10856-008-3371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3371-z

Keywords

Navigation