Skip to main content
Log in

The effects of peroxide content on the wear behavior, microstructure and mechanical properties of peroxide crosslinked ultra-high molecular weight polyethylene used in total hip replacement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The wear of the ultra-high molecular weight polyethylene (UHMWPE) acetabular components and wear debris induced osteolysis are the major causes of failure in total hip replacements. Crosslinking has been shown to improve the wear resistance of UHMWPE by producing a network structure, resisting the plastic deformation of the surface layer. In this study organic peroxides were used to crosslink two different types of UHMWPE resins, using hot isostatic pressing as the processing method. The effects of peroxide content on the different properties were investigated, along with the effect of the crosslink density on the wear behavior. An increase in peroxide content decreases the melting point and the degree of crystallinity, which results in a decrease in the yield strength. The ultimate tensile strength remains essentially unchanged. The molecular weight between crosslinks decreases with an increase in the peroxide content and reaches a saturation limit at around 0.3–0.5 weight percent peroxide, its value at the saturation limit is a function of the virgin resin used for processing. The wear rate decreases linearly with the increase in crosslink density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Kurtz, O.K. Muratoglu, M. Evans, A.A. Edidin, Biomaterials 20, 1659 (1999)

    Article  CAS  Google Scholar 

  2. S. Li, Opera. Techn. Orthop. 11, 288 (2001)

    Article  Google Scholar 

  3. L.A. Pruitt, Biomaterials 26, 905 (2005)

    Article  CAS  Google Scholar 

  4. W.H. Harris, Clin. Orthop. Relat. Res. 311, 46 (1995)

    Google Scholar 

  5. A. Buford, T. Goswami, Mater. Design 25, 385 (2004)

    Article  CAS  Google Scholar 

  6. N. Shibata, S.M. Kurtz, N. Tomita, J. Biomech. Sci. Eng. 1, 107 (2006)

    Article  Google Scholar 

  7. M. Jasty, H.E. Rubash, O. Muratoglu, J. Arthroplasty 20, 55 (2005)

    Article  Google Scholar 

  8. M.D. Ries, J. Arthroplasty 20, 59 (2005)

    Google Scholar 

  9. D.W. Manning, P.P. Chiang, J.M. Martell, J.O. Galante, W.H. Harris, J. Arthroplasty 20, 880 (2005)

    Article  Google Scholar 

  10. O.K. Muratoglu, C.R. Bragdon, D.O. O’Connor, M. Jasty, W.H. Harris, J. Arthroplasty 16, 149 (2001)

    Article  CAS  Google Scholar 

  11. J.M. Martell, J.J. Verner, S.J. Incavo, J. Arthroplasty 18, 55 (2003)

    Article  Google Scholar 

  12. O.K. Muratoglu, C.R. Bragdon, D.O. O’Connor, M. Jasty, W.H. Harris, R. Gul, F. McGarry, Biomaterials 20, 1463 (1999)

    Article  CAS  Google Scholar 

  13. G. Lewis, Biomaterials 22, 371 (2001)

    Article  CAS  Google Scholar 

  14. N.P. Suh, Tribophysics (Prentice-Hall, Inc., NJ, 1986) p. 223

    Google Scholar 

  15. R.M. Gul, F.J. McGarry, C.R. Bragdon, O.K. Muratoglu, W.H. Harris, Biomaterials 24, 3193 (2003)

    Article  CAS  Google Scholar 

  16. S.M. Kurtz, L.A. Pruitt, C.W. Jewett, J.R. Foulds, A.A. Edidin, Biomaterials 20, 1449 (1999)

    Article  CAS  Google Scholar 

  17. A. Wang, Wear 248, 38 (2001)

    Article  CAS  Google Scholar 

  18. A.A. Edidin, L. Pruitt, C.W. Jewett, D.J. Crane, D. Roberts, S.M. Kurtz, J. Arthroplasty 14, 616 (1999)

    Article  CAS  Google Scholar 

  19. B. Dave, in Handbook of Elastomers: New Developments and Technology, ed. by A.K. Bhomick, H.L. Stephens (Marcel Dekker, Inc, 1988)

  20. S. Venkatraman, L. Kleiner, Adv. Polym. Technol. 9, 265 (1989)

    Article  CAS  Google Scholar 

  21. F.W. Shen, H.A. Mckellop, R. Salovey, J. Polym. Sci. Part B: Polym. Phys. 34, 1063 (1996)

    Article  CAS  Google Scholar 

  22. H. Oonishi, Y. Takayama, E. Tsuji, Radiat. Phys. Chem., Int. J. Radiat. Appl. Instrum., Part C 39, 495 (1992)

    Article  CAS  Google Scholar 

  23. H. Oonishi, M. Kuno, E. Tsuji, A. Fujisawa, J. Mater. Sci.-Mater. M. 8, 11 (1997)

    Article  CAS  Google Scholar 

  24. O.K. Muratoglu, D.O. O’Connor, C.R. Bragdon, J. Delaney, M. Jasty, W.H. Harris, E. Merrill, P. Vengupalan, Biomaterials 23, 717 (2002)

    Article  CAS  Google Scholar 

  25. S.M. Kurtz, M.L. Villarraga, M.P. Herr, J.S. Bergstrom, C.M. Rimnac, A.A. Edidin, Biomaterials 23, 3681 (2002)

    Article  CAS  Google Scholar 

  26. C.Y. Tang, X.L. Xie, X.C. Wu, R.K.Y. Li, Y.W. Mai, J. Mater. Sci.-Mater. M 13, 1065 (2002)

    Article  CAS  Google Scholar 

  27. H. Sakoda, A.M. Voice, H.M.J. McEwen, G.H. Issac, C. Hardaker, B.M. Wroblewski, J. Fisher, J. Arthroplasty 16, 1018 (2001)

    Article  CAS  Google Scholar 

  28. S.M. Kurtz, in The UHMWPE Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement (Elsevier Academic Press, 2004) p. 17

  29. R.M. Gul, Ph. D Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology (1997)

  30. D.J. Dijkstra, W. Hoogsteen, A.J. Pennings, Polymer 30, 866 (1989)

    Article  CAS  Google Scholar 

  31. C.R. Bragdon, D.O. O’Connor, J.D. Lowenstein, M. Jasty, S.A. Biggs, W.H. Harris, J. Arthroplasty 16, 658 (2001)

    Article  CAS  Google Scholar 

  32. J. de Boer, A.J. Pennings, Polymer 23, 1944 (1982)

    Article  Google Scholar 

  33. J. de Boer, H.-J. den Berg, A.J. Pennings, Polymer 25, 513 (1984)

    Article  Google Scholar 

  34. A. Posthuma, J. de Boer, A.J. Pennings, J. Polym. Sci. Part B Polym. Phys. 14, 187 (1976)

    Google Scholar 

  35. C.I. Yim, K.J. Lee, J.Y. Jho, K. Choi, Polym. Bull. 42, 433 (1999)

    Article  CAS  Google Scholar 

  36. H.A. Khonakdar, J. Morshedian, U. Wagenknecht, S.H. Jafari, Polymer 44, 4301 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to acknowledge the effective support and guidance of Prof. F. J. McGarry, Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA in completing the study and preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan M. Gul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gul, R.M. The effects of peroxide content on the wear behavior, microstructure and mechanical properties of peroxide crosslinked ultra-high molecular weight polyethylene used in total hip replacement. J Mater Sci: Mater Med 19, 2427–2435 (2008). https://doi.org/10.1007/s10856-008-3368-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3368-7

Keywords

Navigation