Abstract
Hydroxyapatite scaffolds with a multi modal porosity designed for use in tissue engineering of vascularized bone graft substitutes were prepared by three dimensional printing. Depending on the ratio of coarse (mean particle size 50 μm) to fine powder (mean particle size 4 μm) in the powder granulate and the sintering temperature total porosity was varied from 30% to 64%. While macroscopic pore channels with a diameter of 1 mm were created by CAD design, porosity structure in the sintered solid phase was governed by the granulate structure of the printing powder. Scaffolds sintered at 1,250 °C were characterized by a bimodal pore structure with intragranular pores of 0.3–0.4 μm and intergranular pores of 20 μm whereas scaffolds sintered at 1,400 °C exhibit a monomodal porosity with a maximum of pore size distribution at 10–20 μm. For in-vivo testing, matrices were implanted subcutaneously in four male Lewis rats. Scaffolds with 50% porosity and an average pore size of ∼18 μm were successfully transferred to rats and vascularized within 4 weeks.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
K. A. HING, Int. J. Appl. Ceram. Technol. 2 (2005) 184
A. A. WHITE, S. M. BEST and I. A. KINLOCH, Int. J. Appl. Ceram. Technol. 4 (2007) 1
J. R. JONES and L. L. HENCH, Curr. Opin. Solid State Mater. Sci. 71 (2003) 301
A. J. SALGADO, O. P. CAUTINHO and R. L. REIS, Macromol. Biosci. 4 (2004) 743
K. D. KARAGEORGIOU, Biomaterials 37 (2005) 533
C. D. HOLY, M. S. SHOICHET and J. E. DAVIES, J. Biomed. Mater. Res. 51 (2000) 376
R. Z. LEGEROS, Clin. Orthop. Relat. Res. 395 (2002) 81
S. DOROZHKIN, J. Mater. Sci. 42 (2007) 1061
U. KNESER, P. M. KAUFMANN, H. C. FIEGEL, J. M. POLLOK, D. KLUTH, H. HERBST and X. ROGIERS, J. Biomed. Mater. Res. 47 (1999) 494
A. D. BACH, J. P. BEIER, J. STERN-STAETER and R. E. HORCH, J. Cell. Mol. Med. 8 (2004) 413
K. NORRBY, J. Cell. Mol. Med. 10 (2006) 588
O. C. CASSELL, S. O. HOFER, W. A. MORRISON and K. R. KNIGHT, Br. J. Plast. Surg. 55 (2002) 603
E. POLYKANDRIOTIS, R. E. HORCH, A. ARKUDAS, A. LABANARIS, K. BRUNE, P. GREIL, A. D. BACH, J. KOPP, A. HESS and U. KNESER, Adv. Exp. Med. Biol. 585 (2006) 311
E. POLYKANDRIOTIS, J. TJIAWI, S. EULER, A. ARKUDASN, A. HESS, K. BRUNE, P. GREIL, A. LAMETSCHWANDTNER, R. E. HORCH and U. KNESER, Microvasc. Res. 1 (2008) 25
E. POLYKANDRIOTIS, A. ARKUDAS, S. EULER, J. P. BEIER, R. E. HORCH and U. KNESER, Handchir. Mikrochir. Plast. Chir. 38 (2006) 217
U. KNESER, E. POLYKANDRIOTIS, J. OHNHOLZ, K. HEIDNER, L. GRABINGER, S. EULER, K. AMANN, A. HESS, K. BRUNE, P. GREIL, M. STÜRZL and R. E. HORCH, Tissue Eng. 12 (2006) 1721
E. POLYKANDRIOTIS, R. E. HORCH, M. STURZL, U. KNESER, J. Cell. Mol. Med. 11 (2007) 6
P. DUCHEYNE, M. MARCOLONGO and E. SCHEPERS, “Bioceramic composites.” In An Introduction to Bioceramics, edited by L. L. HENCH and J. WILSON (New York: World Scientific Publishing Co., 1993) p. 281
W. BONFIELD, “Design of bioactive ceramic-polymer composites.” In An Introduction to Bioceramics, edited by L. L. HENCH and J. WILSON (New York: World Scientific Publishing Co., 1993) p. 299
G. DE WITH and A. J. CORBIJN, J. Mater. Sci. 24 (1989) 3411
J. LI, L. HERMANSSON and R. SOREMARK, J. Mater. Sci. Mater. Med. 4 (1993) 50
J. LI, B. FARTASH and L. HERMANSSON, Biomaterials 16 (1995) 417
J. D. SANTOS, P. L. SILVA, J. C. KNOWLES, S. TALAL and F. J. MONTEIRO, J. Mater. Sci. Mater. Med. 7 (1996) 187
K. KONDO, M. OKUYAMA, H. OGAWA and Y. ABE, J. Am. Ceram. Soc. 67 (1984) C 222
F. C. M. DRIESSENS, J. Biosci. 35 (1980) 357
J. R. JONES and L. L. HENCH, Curr. Opin. Solid State Mater. Sci. 71 (2003) 301
L. L. HENCH, Biomaterials 19 (1998) 1419
E. C. SHORS and R. E. HOLMES, “Porous hydroxyapatite.” In An Introduction to Bioceramics, edited by L. L. HENCH and J. WILSON (New York: World Scientific Publishing Co., 1993) p. 181
S. PRAMANIK, A. K. AGARWAL, K. N. RAI and A. GARG, Ceram. Int. 33 (2007) 419
J. WERNER, B. LINNER-KRCMAR, W. FRIESS and P. GREIL, Biomaterials 23 (2003) 4285
M. FABBRI, G. C. CELOTTI and A. RAVAGLIOLI, Biomaterials 16 (1995) 225
P. SEPULVEDA, J. G. P. BINNER, S. O. ROGERO, O. Z. HIGA and J. C. BRESSIANI, J. Biomed. Mater. Res. 50 (2000) 27
D. M. ROY and S. K. LINNEHAN, Nature 247 (1974) 220
S. DEVILLE, E. SAIZ, K. R. NALLA and P. A. TOMSIA, Science 311 (2006) 515
C. X. F. LAM, X. M. MO, S. H. TEOH and D. W. HUTMACHER, Mater. Sci. Eng. C 20 (2002) 49
H. SEITZ, W. RIEDER, S. IRSEN, B. LEUKERS and C. TILLE, J. Biomed. Mater. Res. B 74 (2005) 782
R. CHUMNANKLANG, T. PANYATHAMMAPORN, K. SITTHISERIPRATIP and J. SUWANPRATEEB, Mater. Sci. Eng. C 27 (2007) 914
B. LEUKERS, H. GÜLKAN, S. H. IRSEN, S. MILZ, C. TILLE, M. SCHIECKER and H. SEITZ, J. Mater. Sci. 16 (2005) 1121
H. Y. SOHN and C. MORELAND, Can. J. Chem. Eng. 46 (1968) 162
A. R. DEXTER and D. W. TANNER, Nature Phys. Sci. 238 (1972) 31
P. A. CUNDALL and O. D. L. STRACK, Geotechnique 29 (1979) 47
G. T. NOLAN and P. E. KAVANAGH, Powder Technol. 72 (1992) 149
C. A. ANDERSSON, J. Am. Ceram. Soc. 79 (1996) 2181
J. A. FUNK and D. R. DINGER, Predictive Process Control of Crowded Particulate Suspensions (Norwell, Massachusetts: Kluwer Academic Publishers, 1994)
J. A. FUNK, D. R. DINGER, Ceram. Bull. 67 (1988) 890
R. Z. LEGEROS and J. P. LEGEROS, “Dense hydroxyapatite.” In An Introduction to Bioceramics, edited by L. L. HENCH and J. WILSON (New York: World Scientific Publishing Co., 1993) p. 154
M. BOHNER, Int. J. Care. Inj. 31 (2000) 37
L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487
K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci. Mater. Med. 10 (1999) 134
R. W. RICE and W. R. GRACE, J. Mater. Sci. 31 (1996) 102
C. A. ANDERSSON, J. Am. Ceram. Soc. 79 (1996) 2181
K. DE GROOT, “Ceramics of calcium phosphate, preparation and properties.” In Bioceramics of Calcium Phosphate, edited by K. DE GROOT (Boca Raton, FL: CRC-Press, 1983) p. 102
T. D. TONYAN and L. J. GIBSON, J. Mater. Sci. 27 (1992) 6371
L. J. GIBSON and M. F. ASHBY, Cellular Solids, Structure and Properties, 2nd edn. (Oxford: Pergamon Press, 2001)
R. E. HOLMES, Plast. Reconstr. Surg. 63 (1979) 626
A. BIGNON, J. CHOUTEAU, J. CHEVALIER, G. FANTOZZI, J. P. CARRET, P. CHAVASSIEUX, G. BOIVIN, M. MELIN and D. HARTMANN, J. Mater. Sci. Mater. Med. 14 (2003) 1089
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Will, J., Melcher, R., Treul, C. et al. Porous ceramic bone scaffolds for vascularized bone tissue regeneration. J Mater Sci: Mater Med 19, 2781–2790 (2008). https://doi.org/10.1007/s10856-007-3346-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10856-007-3346-5