Biological evaluation of partially stabilized zirconia added HA/HDPE composites with osteoblast and fibroblast cell lines

Abstract

In the present study, the biocompatibility of partially stabilized zirconia (PSZ) added hydroxyapatite (HA)––high density polyethylene (HDPE) composites was evaluated by proliferation and cell attachment assays on two osteoblast cell lines (G-292, Saos-2) and a type of fibroblast cell isolated from bone tissue namely HBF in different time intervals. Cell-material interactions on the surface of the composites were observed by scanning electron microscopy (SEM). The effect of composites on the behavior of osteoblast and fibroblast cells was compared with those of HDPE and Tissue Culture Poly Styrene (TPS) (as negative control) samples. Results showed that the composite samples supported a higher proliferation rate of osteoblast cells in the presence of composite samples as compared to the HDPE and TPS samples after 3, 7 and 14 days of incubation period. It was showed that an equal or in some cases an even higher proliferation rate of G-292 and Saos-2 osteoblast cells on composite samples in compare to negative controls in culture period (< 0.05). The number of adhered cells on the composite samples was equal and in some cases higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods (< 0.05). Adhered cells presented a normal morphology by SEM and many of the cells were seen to be undergoing cell division.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487

    Article  CAS  Google Scholar 

  2. 2.

    P. DUCHEYNE and Q. QIU, Biomaterials 20 (1999) 2287

    Article  CAS  Google Scholar 

  3. 3.

    H. K. XU. HOCKIN and C. G. SIMON, J. Orthop. Res. 22 (2004) 535

    Article  CAS  Google Scholar 

  4. 4.

    N. RANGAVITAL and A. R. LANDAD-CANOVAS, J. Biomed. Mater. Res. 51 (2000) 660

    Article  Google Scholar 

  5. 5.

    J. BARRALET, M. AKAO and H. AOKI, J. Biomed. Mater. Res. 49 (2000) 176

    Article  CAS  Google Scholar 

  6. 6.

    W. BONFIELD, J. C. BEHIRI, C. DOYLE, J. BOWMAN, J. ABRAM, in “Biomatrials and Biomechnics 1983”, edited by P. Ducheyne, G. Van der Perre, A.E. Aubert (Elsevier Science Publishers, Amesterdam, 1984) p. 421

    Google Scholar 

  7. 7.

    G. P. EVANS, J. C. BEHIRI, J. D. CURREY and W. BONFIELD, J. Mater. Sci. Mater. Med. 1 (1990) 38

    Article  CAS  Google Scholar 

  8. 8.

    J. SUWANPRATEEB, K. E. TANNER, S. TURNER and W. BONFIELD, J. Mater. Sci. Mater. Med. 6 (1995) 805

    Article  Google Scholar 

  9. 9.

    C. P. SIM, P. CHEANG, M. H. LIANG and K. A KHOR, J. Mater. Process. Tech. 69 (1997) 75

    Article  Google Scholar 

  10. 10.

    J. HUANG, L. DI SILVIO, M. WANG, K. E. TANNER and W. BONFIELD, J. Mater. Sci. Mater. Med. 8 (1997) 775

    Article  CAS  Google Scholar 

  11. 11.

    J. SUWANPRATEEB, K. E. TANNER, S. TURNER and W. BONFIELD, J. Mater. Sci. Mater. Med. 8 (1997) 469

    Article  CAS  Google Scholar 

  12. 12.

    M. WANG, R. JOSEPH and W. BONFIELD, Biomaterials 19 (1998) 2357

    Article  CAS  Google Scholar 

  13. 13.

    F. J. GUILD and W. BONFIELD, J. Mater. Sci. Mater. Med. 9 (1998) 497

    Article  CAS  Google Scholar 

  14. 14.

    M. WANG, C. BERRY, M. BRADEN and W. BONFIELD, J. Mater. Sci. Mater. Med. 9 (1998) 621

    Article  CAS  Google Scholar 

  15. 15.

    S. N. NAZHAT, R. JOSEPH, M. WANG, R. SMITH, K. E. TANNER and W. BONFIELD, J. Mater. Sci. Mater. Med. 11 (2000) 621

    Article  CAS  Google Scholar 

  16. 16.

    P. T. TON THAT, K. E. TANNER and W. BONFIELD, J. Biomed. Mater. Res. 51 (2000) 453

    Article  Google Scholar 

  17. 17.

    P. T. TON THAT, K. E. TANNER and W. BONFIELD, J. Biomed. Mater. Res. 51 (2000) 460

    Article  Google Scholar 

  18. 18.

    L. DI SILVIO and M. DALBY, J. Mater. Sci. Mater. Med. 9 (1998) 845

    Article  CAS  Google Scholar 

  19. 19.

    L. DI SILVIO, M. DALBY and W. BONFIELD, Biomaterials 23 (2002) 101

    Article  CAS  Google Scholar 

  20. 20.

    M. DALBY, M. V. KAYSER, W. BONFIELD and L. DI SILVIO, Biomaterials 23 (2002) 681

    Article  CAS  Google Scholar 

  21. 21.

    M. DALBY, L. DI SILVIO, G. W. DAVIES and W. BONFIELD, J. Biomed. Mater. Res. 12 (2000) 805

    Google Scholar 

  22. 22.

    A. YARI SADI, S. SH. HOMAEIGOHAR, A. R. KHAVANDI and J. JAVADPOUR, J. Mater. Sci: Mater. Med. 8 (2004) 853

    Article  Google Scholar 

  23. 23.

    A. YARI SADI, M. A. SHOKRGOZAR, S. SH. HOMAEIGOHAR, M. HOSSEINALIPOUR, A. R. KHAVANDI and J. JAVADPOUR, J. Mater. Sci: Mater. Med. 17 (2006) 407

    Article  CAS  Google Scholar 

  24. 24.

    C. PICONI and G. MACCAURO, Biomaterials 20 (1999) 1

    Article  CAS  Google Scholar 

  25. 25.

    H. W. KIMA, Y. J. NOHA, Y. H. KOHA, H. E. KIMA and H. M. KIM, Biomaterials 23 (2002) 4113

    Article  Google Scholar 

  26. 26.

    A. M. PPATEL and M. SPECTOR, in “Bioceramics”, edited by J. Wilson, L. L. Hench. and D. Greenspan, Vol 8 (Elsevier Science Publishers, 1995) p. 169

  27. 27.

    W. KIM, H. G. GEORGIOU, J. C. KNOWLES, Y. H. KOH and H. E. KIM, Biomaterials 25 (2004) 4203

    Article  CAS  Google Scholar 

  28. 28.

    V. COVACCI, N. BRUZZESE, G. MACCAURO, C. ANDREASSI, G. A. RICCI, C. PICONI, E. MARMO, W. BURGER and A. CITTADINI, Biomaterials 20 (1999) 371

    Article  CAS  Google Scholar 

  29. 29.

    A. SUDA, T. SATO, A. ISHIKAWA, M. TAKAGI, T. OSANAI, H. KATO and H. ORUI, in “Bioceramics”, edited by J. Wilson, L. L. Hench and D. Greenspan, Vol 8 (Elsevier Science Publishers, 1995) p. 465

  30. 30.

    M. J. DALBY, L. DI SILVIO, E. J. HARPER and W. BONFIELD, Biomaterials 22 (2001) 1739

    Article  CAS  Google Scholar 

  31. 31.

    M. J. DALBY, L. DI SILVIO, N. GURAV, B. ANNAZ, M. V. KAYSER and W. BONFIELD, Tissue. Eng. 8 (2002) 453

    Article  CAS  Google Scholar 

  32. 32.

    S. M. REA, R. A. BROOKS, S. M. BEST, T. KOKUBO, and W. BONFIELD, Biomaterials 25 (2004) 4503

    Article  CAS  Google Scholar 

  33. 33.

    Th. J. WEBSTER and J. U. EJIOFOR , Biomaterials 25 (2004) 4731

    Google Scholar 

  34. 34.

    M. J. DALBY, L. DI SILVIO, E. J. HARPER and W. BONFIELD, J. Mater. Sci.: Mater. Med. 10 (1999) 793

    Article  CAS  Google Scholar 

  35. 35.

    M. J. DALBY, L. DI SILVIO, E. J. HARPER and W. BONFIELD, Biomaterials 23 (2002) 569

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the personnel of X-ray and SEM laboratories of the department of materials and metallurgy engineering of IUST, the personnel of Milad pathobiology laboratory, Polymer faculty of Amir kabir Industrial university, Atomic energy Organization of Iran, Iran Composite Institute as well as Iran materials and energy research center and finally special thanks to the personnel of Cell Bank of Iran Pasteur Institute for their assistance and useful consultations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Shokrgozar.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yari Sadi, A., Shokrgozar, M.A., Homaeigohar, S.S. et al. Biological evaluation of partially stabilized zirconia added HA/HDPE composites with osteoblast and fibroblast cell lines. J Mater Sci: Mater Med 19, 2359–2365 (2008). https://doi.org/10.1007/s10856-007-3336-7

Download citation

Keywords

  • Composite Sample
  • Fibroblast Cell
  • HDPE
  • High Proliferation Rate
  • Osteoblast Cell Line