Skip to main content

Advertisement

Log in

Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bulk and structural properties of zinc oxide (0 up to 20 mol%) containing phosphate glasses, developed for biomedical applications, were investigated throughout this study using differential thermal analysis (DTA), differential scanning calorimetry, X-ray powder diffraction and 31P and 23Na MAS NMR. Surface wettability and MG63 viability were also considered for surface characterisation of these glasses. The results indicated that incorporation of zinc oxide as a dopant into phosphate glasses produced a significant increase in density; however, the thermal properties presented in glass transition, and melting temperatures were reduced. NaZn(PO3)3 was detected in the X-Ray Powder Diffraction Analysis (XRD) trace of zinc containing glasses, and the proportion of this phase increased with increasing zinc oxide content. NaCa(PO3)3 as a second main phase and CaP2O6 in minor amounts were also detected. The 31P and 23Na MAS NMR results suggested that the relative abundances of the Q1 and Q2 phosphorus sites, and the local sodium environment were unaffected as CaO was replaced by ZnO in this system. The replacement of CaO with ZnO did seem to have the effect of increasing the local disorder of the Q2 metaphosphate chains, but less so for the Q1 chain-terminating sites which were already relatively disordered due to the proximity of modifying cations. Glasses with zinc oxide less than 5 mol% showed higher surface wettability, while those with 5 up to 20 mol% showed comparable wettability as zinc oxide free glasses. Regardless of the high hydrophilicity and surface reactivity of these zinc oxide containing glasses, they had lower biocompatibility, in particular 10–20 mol% ZnO, compared to both zinc free glasses and Thermanox®. This may be associated with the release of significant amount of Zn2+ enough to be toxic to MG63.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. L. HENCH and J. M. POLAK, Science 295(5557) (2002) 1014

    Article  CAS  Google Scholar 

  2. J. C. KNOWLES, J. Mater. Chem. 13 (2003) 2395

    Article  CAS  Google Scholar 

  3. K. FRANKS, I. ABRAHAMS and J. C. KNOWLES, J. Mater. Sci. Mater. Med. 11 (2000) 609

    Article  CAS  Google Scholar 

  4. V. SALIH, K. FRANKS, M. JAMES, G. W. HASTINGS, and J. C. KNOWLES, J. Mater. Sci. Mater. Med. 11 (2000) 615

    Article  CAS  Google Scholar 

  5. X. YU, D. E. DAY, G. J. LONG and R. K. BROW, J. Non-Cryst. Solids 215 (1997) 21

    Article  CAS  Google Scholar 

  6. C. S. RAY, X. FANG, M. KARABULUT, G. K. MARASINGHE and D. E. DAY, J. Non-Cryst. Solids 249(1) (1999) 1

    Article  CAS  Google Scholar 

  7. I. AHMED, C. A. COLLINS, M. P. LEWIS, I. OLSEN and J. C. KNOWLES, Biomaterials 25 (2004) 3223

    Article  CAS  Google Scholar 

  8. E. A. ABOU NEEL, I. AHMED, J. J. BLAKER, A. BISMARCK, A. R. BOCCACCINI, M. P. LEWIS, S. N. NAZHAT and J. C. KNOWLES, Acta Biomaterialia 1 (2005) 553

    Article  CAS  Google Scholar 

  9. E. A. ABOU NEEL, I. AHMED, J. PRATTEN, S. N. NAZHAT and J. C. KNOWLES, Biomaterials 26 (2005) 2247

    Article  CAS  Google Scholar 

  10. R. SHAH, A. C. M. SINANAN, J. C. KNOWLES, N. P. HUNT and M. P. LEWIS, Biomaterials 26 (2005) 1497

    Article  CAS  Google Scholar 

  11. M. NAVARRO, M.-P. GINEBRA and J. A. PLANELL, J. Biomed. Mater. Res. 67A (2003) 1009

    Article  CAS  Google Scholar 

  12. V. RAJENDRAN, A. V. GAYATHRI DEVI, M. AZOOZ and F. H. EL-BATAL, J. Non-Cryst. Solids 353(1) (2006) 77

    Article  Google Scholar 

  13. E. A. ABOU NEEL, T. MIZOGUCHI, M. ITO, M. BITAR, V. SALIH and J. C. KNOWLES, Biomaterials 28 (2007) 2967

    Article  CAS  Google Scholar 

  14. E. A. ABOU NEEL and J. C. KNOWLES, J Mater. Sci. Mater. Med. doi: 10.1007/s10856-007-3079-5

  15. V. SALIH, A. PATEL and J. C. KNOWLES, Biomed. Mater. 2 (2007) 1

    Article  Google Scholar 

  16. K. FRANKS, ‘The structure and properties of soluble phosphate based glasses, PhD thesis, University of London (2000)

  17. M. KAMITAKAHARA, C. OHTUSUKI, H. INADA, M. TANIHARA, and T. MIYAZAKI, Acta Biomaterialia 2 (2006) 467

    Article  CAS  Google Scholar 

  18. R. M. DAY and A. R. BOCCACCINI, J. Biomed. Mater. Res. 73A (2005) 73

    Article  CAS  Google Scholar 

  19. P. PETRINI, C. R. ARCIOLA, I. PEZAALI, S. BOZZINI, L. MONTANARO, M. C. TANZI, P. SPEZIALI and L. VISAI, Int. J. Artif. Organs 29(4) (2006) 434

    CAS  Google Scholar 

  20. D. MASSIOT, F. FAYON, M. CAPRON, I. KING, S. LE CALVÉ, B. ALONSO, J.-O. DURAND, B. BUJOLI, Z. GAN and G. HOATSON, Magn. Reson. Chem. 40 (2002) 70

    Article  CAS  Google Scholar 

  21. T. F. KEMP, High Field Solid State 27Al NMR of ceramics and glasses. Masters Thesis, University of Warwick (2004)

  22. D. R. LIDE, “Handbook of Chemistry and Physics”, 74th edn. (The Chemical Rubber Publishing Company, 1993–1994), pp. 4–126 & 12–160

  23. P. Y. SHIH, S. W. YUNG and T. S. CHIN, J. Non-Cryst. Solids 224 (1998) 143

    Article  CAS  Google Scholar 

  24. L. A. O’DELL, S. L. P. SAVIN, A. V. CHADWICK and M. E. SMITH, Appl. Magn. Reson. 32 (2007) 527

    Google Scholar 

  25. R. K. BROW, R. J. KIRKPATRICK and G. L. TURNER, J. Non-Cryst. Solids 116 (1990) 39

    Article  CAS  Google Scholar 

  26. R. K. BROW, C. C. PHIFER, G. L. TURNER and R. J. KIRKPATRICK, J. Am. Ceram. Soc. 74 (1991) 1287

    Article  CAS  Google Scholar 

  27. J. J. BLAKER, V. MAQUET, A. R. BOCCACCINI, R. JÉRÔME and A. BISMARCK, e-polymers (2005) Art No. 23 Apr 1

  28. S. WU, “Polymer Interface and Adhesion” (Marcel Dekker, 1982)

  29. R. J. GOOD and C. J. Van OSS, in “The Modern Theory of Contact Angles and the Hydrogen Bond Components of Surface Energies: In Modern Approaches to Wettability edited by M. E. Schrader and G. I. Loeb (Plenum, New York, 1992)

  30. F. M. FOWKES, Ind. Eng. Chem. 56(12) (1964) 40

    Article  CAS  Google Scholar 

  31. F. M. FOWKES, J. Phys. Chem. 66(2) (1962) 382

    Article  CAS  Google Scholar 

  32. D. K. OWENS and R. C. WENDT, J. Appl. Polym. Sci. 13 (1969) 1741

    Article  CAS  Google Scholar 

  33. A. ITO, K. OJIMA, H. NAITO, N. ICHINOSE and T. TATEISHI, J. Biomed. Mater. Res. 50 (2000) 178

    Article  CAS  Google Scholar 

  34. W. AINA, A. PERARDI, L. BERGANDI, G. MALAVASI, L. MENABUE, C. MORTERRA and D. GHIGO, Chem. Biol. Interact. 167 (2007) 207

    Article  CAS  Google Scholar 

  35. Y. SOGO, T. SAKURAI, K. ONUMA and A. ITO, J. Biomed. Mater. Res. 62 (2002) 457

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge the EPSRC for providing the funding to conduct this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Campbell Knowles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abou Neel, E.A., O’Dell, L.A., Smith, M.E. et al. Processing, characterisation, and biocompatibility of zinc modified metaphosphate based glasses for biomedical applications. J Mater Sci: Mater Med 19, 1669–1679 (2008). https://doi.org/10.1007/s10856-007-3313-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3313-1

Keywords

Navigation