Skip to main content
Log in

Calcium phosphate formation on plasma immersion ion implanted low density polyethylene and polytetrafluorethylene surfaces

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The flexible structure of polymers has enabled them to be useful in a wide variety of medical applications due to the possibility to tailor their properties to suit desired applications. For a long time, there has been an increasing interest in utilizing polymers as matrices for calcium phosphate-based composites with applications in hard tissue implants. On the other side, polymers with application as heart valves, urea catheters and artificial vessels present a case where the formation of minerals (namely calcification) should be avoided. The modification of polymer surfaces by various ion beam treatments for reducing the calcification, as for example plasma immersion ion implantation (PIII), is well known and has a long time effect. This work is part of a wider investigation of the ability of plasma immersion ion implanted polymers to induce calcium phosphate formation from an aqueous solution resembling the human blood plasma. In the experiment described in this paper, topographical and chemical changes were inserted on the surfaces of two conventional polymers (low density polyethylene and polytetrafluorethylene) by PIII with nitrogen ions, and under conditions mimicking the natural mineral formation processes. The effect of the plasma modification on the calcium phosphate nucleation and growth from the aqueous solution was ambiguous. We suppose that the complex combination of surface characteristics influenced the ability of the plasma treated polymer films to induce the formation of a calcium phosphate layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. FAVIA, E. SARDELLA, R. GRISTINA and R. D’AGOSTINO, Surf. Coat. Technol. 169–170 (2003) 707

    Article  Google Scholar 

  2. P. K. CHU, J. Y. CHEN, L. P. WANG, N. HUANG and J. JAGUR-GRODZINSKI, e-Polymers 012 (2003) 1

    Google Scholar 

  3. H. PLANK, I. SYRE, M. DAUNER and G. EGBERS, in "Polyurethanes In Biomedical Engineering", Vol ii (Elsevier, Amsterdam, 1987)

  4. P. DIDISHEIM and J. WATSON, in “Biomaterials Science: An Introduction to Materials in Medicine”, Edited by: B. RATNER, A. HOFFMAN, F. SCHOEN and J. LEMONS (Academic Press Inc., San Diego, CA 1996)

  5. H. LEE, S. KIM and G. KHANG, in “The Biomedical Engineering Handbook”, Edited by: J. BRONZINO (CRC Press, 1995) p. 581

  6. P. CHUA, J. CHENA, L. WANGA and N. HUANG, Mater. Sci. Eng. R. 36 (2002) 143

    Article  Google Scholar 

  7. K. WALACHOVA, V. SVORCIK, L. BACAKOVA and V. HNATOWICZ, Biomaterials 23 (2002) 2989

    Article  CAS  Google Scholar 

  8. C. SATRIANO, S. CARNAZZA, S. GUGLIELMINO and G. MARLETTA, Nucl. Instrum. Methods Phys. Res. B. 208 (2003) 287

    Article  CAS  Google Scholar 

  9. D. CASTNER and B. RATNER, Surf. Sci. 500(1–3) (2002) 28

    Article  CAS  Google Scholar 

  10. J. ANDRADE, in “Surface and Interfacial Aspects of Biomedical Polymers”, Edited by: J. ANDRADE, Vol. 2. (Plenum Press, New York, 1985)

  11. J. BRASH, in “Biocompatible Polymers, Metals and Composites”, Edited by: M. SZYCHER (ED) (Technomic, Lancaster, 1983)

  12. P. DUCHEYNE and Q. QUI, Biomaterials 20 (1999) 2287

    Article  CAS  Google Scholar 

  13. R. WUTHIER and J. CUMMINS, Biochim. Biophys. Acta 337 (1974) 50

    CAS  Google Scholar 

  14. H. LOWENSTAM and S. WEINER, in "On Biomineralization" (Oxford University Press, Oxford, 1989)

  15. G. NANCOLLAS and W. WU, J. Cryst. Growth 211 (2000) 137

    Article  CAS  Google Scholar 

  16. L. CAO, E. BOEVE, W. DE BRUIJN, W. ROBERTSON and F. SCHRODER, Scan. Microsc. 7(3) (1993) 1049

    CAS  Google Scholar 

  17. M. TIRRELL, E. KOKKOLI and M. BIESALSKI, Surf. Sci. 500 (2002) 61

    Article  CAS  Google Scholar 

  18. S. DAWIDS, in “Test Procedures for the Blood Compatibility of Biomaterials”, Edited by: D. S. KLUWER (Academic Publisher, The Netherlands, 1993), p. 3

  19. T. KOKUBO and H. TAKADAMA, Biomaterials 27 (2006) 2907

    Article  CAS  Google Scholar 

  20. E. A. VOGLER, in “Wettability, Surfactant Science Series”, Edited by: J. BERG and M. DEKKER, Vol 49 (New York, 1993), p 184

  21. G. MESYATS, Yu. KLYACHKIN, N. GAVRILOV and A. KONDYURIN, Vacuum 52 (1999) 285

    Article  CAS  Google Scholar 

  22. F. HYDE, M. ALBERG and K. SMITH, J. Ind. Microbiol. Biotechnol. 19 (1997) 142

    Article  CAS  Google Scholar 

  23. J. HUNTSBERGER in “Contact Angle: Wettability and Adhesion, Advances in Chemistry Series”, Edited by: R. GOULD (ACS 1964)

  24. A. KONDYURIN, V. KARMANOV and R. GUENZEL, Vacuum 64 (2002) 105

    Article  Google Scholar 

  25. J. ZHANG, X. YU, H. LI and X. LIU, Appl. Surf. Sci. 185 (2002) 255

    Article  CAS  Google Scholar 

  26. P. C. PAINTER, M. M. COLEMAN and J. L. KOENIG, in "The Theory of Vibrational Spectroscopy and its Application to Polymeric Materials" (Wiley, New York, 1982)

  27. G. MESYATS, Y. KLYACHKIN, N. GAVRILOV, V. MIZGULIN, R. YAKUSHEV and A. KONDYURIN, Vacuum 47(9) (1996) 1085

    Article  CAS  Google Scholar 

  28. L. PRAMATAROVA, E. PECHEVA, R. PRESKER, M. STUTZMANN, M. MAITZ and M. PHAM, J. Optoelectr. Adv. Mater. 7(1) (2005) 469

    CAS  Google Scholar 

  29. L. PRAMATAROVA, E. PECHEVA, T. PETROV, R. PRESKER and M. STUTZMANN, Proc. SPIE 5830 (2005) 419

    Article  CAS  Google Scholar 

  30. L. PRAMATAROVA, E. PECHEVA, D. NESHEVA, Z. LEVI, Z. ANEVA, R. PRAMATAROVA, U. BISMAYER and T. PETROV, Phys. Stat. Sol. C 0(3) (2003) 1070

    Article  CAS  Google Scholar 

  31. I. ALFERIEV, S. STACHELEK, Zh. LU, A. FU, T. SELLARO, J. CONNOLLY, R. BIANCO, M. SACKS and R. LEVY, J. Biomed. Mater. Res. A 66 (2003) 385

    Article  Google Scholar 

  32. Handbook of Optics, in “Fundamentals, Techniques and Design”, Edited by: M. BASS, Vol 1 (McGRAW-HILL, Inc., 1995), p. 9.7

  33. L. SOCRATES, in "Infrared Characteristic Group Frequencies" (Wiley, New York, 1980)

  34. J. C. ELLIOTT, in "Structure and Chemistry of Apatites and Other Calcium Orthophosphates" (Elsevier Science, Amsterdam, 1994)

  35. D. E. PACKHAM, in “1st International. Congress on Adhesion Science and Technology: Invited Papers”, Edited by: W. J. VAN OOIJ and H. R. ANDERSON Jr (VSP Publishers, Utrecht, 1998) p. 81

  36. Ch. OEHR, Nucl. Instrum. Methods Phys. Res. B 208 (2003) 40

    Article  CAS  Google Scholar 

  37. B. PAMPLIN, ed., Crystal Growth (Pergamon Press, 1980)

  38. V. VASILETS, A. KUZNETSOV and V. SEVASTIANOV, J. Biomed. Mater. Res. A 69 (2004) 428

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported partly by the Bulgarian National Scientific Research Fund through Grant L1213/2002. Plasma implantation chamber at the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Rossendorf, Dresden, Germany was used in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Pecheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondyurin, A., Pecheva, E. & Pramatarova, L. Calcium phosphate formation on plasma immersion ion implanted low density polyethylene and polytetrafluorethylene surfaces. J Mater Sci: Mater Med 19, 1145–1153 (2008). https://doi.org/10.1007/s10856-007-3231-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3231-2

Keywords

Navigation