Skip to main content
Log in

Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Nano-sized hydroxyapatite (nanoHA) reinforced composites, mimicking natural bone, were produced. Examination by transmission electron microscopy revealed that the nanoHA particles had a rod-like morphology, 20–30 nm in width and 50–80 nm in length. The phase composition of hydroxyapatite was confirmed by X-ray diffraction. The nanoHA particles were incorporated into poly-2-hydroxyethylmethacrylate (PHEMA)/polycaprolactone (PCL) matrix to make new nanocomposites: nanoHA-PHEMA/PCL. Porous nanocomposite scaffolds were then produced using a porogen leaching method. The interconnectivity of the porous structure of the scaffolds was revealed by non-destructive X-ray microtomography. Porosity of 84% was achieved and pore sizes were approximately around 300–400 μm. An in vitro study found that the nanocomposites were bioactive as indicated by the formation of a bone-like apatite layer after immersion in simulated body fluid. Furthermore, the nanocomposites were able to support the growth and proliferation of primary human osteoblast (HOB) cells. HOB cells developed a well organized actin cytoskeletal protein on the nanocomposite surface. The results demonstrate the potential of the nanocomposite scaffolds for tissue engineering applications for bone repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. A. HING, S. M. BEST and W. BONFIELD, J. Mater. Sci., Mater. Med. 10 (1999) 135

    Article  CAS  Google Scholar 

  2. H. YUAN, J. D. DE BRUIJN, X. ZHANG, C. A. VAN BLITTERSWIJK and K. DE GROOT, J. Biomed. Mater. Res. (Appl. Biomater.) 58 (2001) 270

    Article  CAS  Google Scholar 

  3. T. M. FREYMAN, I. V. YANNAS and L. J. GIBSON, Prog. Mater. Sci. 46 (2001) 273

    Article  CAS  Google Scholar 

  4. J. W. M VEHOF, J. MAHMOOD, H. TAKITA, M. A. VAN’T HOF, Y. KUBOKI, P. H. M SPAUWEN and J. A. JANSEN, Plast. Reconstr. Surg. 108 (2001) 434

    Article  CAS  Google Scholar 

  5. L. L HENCH, J. Am. Ceram. Soc. 74 (1991) 1487

    Article  CAS  Google Scholar 

  6. W. BONFIELD, M. WANG and K. E. TANNER, Acta Materialia 46 (1998), 2509

    Article  CAS  Google Scholar 

  7. J. HUANG, L. DI SILVIO, M. WANG, K. E. TANNER and W. BONFIELD, J. Mater. Sci., Mater. Med. 8 (1997) 775

    Article  CAS  Google Scholar 

  8. X. WANG, Y. LI, J. WEI and K. DE GROOT, Biomaterials 23 (2002) 4787

    Article  CAS  Google Scholar 

  9. G. WEI and P. X. MA, Biomaterials 25 (2005) 4749

    Article  Google Scholar 

  10. J. HUANG, S. M. BEST, S. N. JAYASINGHE, M. J. EDIRISINGHE, R. A. BROOKS, N. RUSHTON and W. BONFIELD, J. Mater. Sci., Mater. Med. 15 (2004) 441

    Article  CAS  Google Scholar 

  11. L. FLYNN, P. D. DALTON and M. S. SHOICHET, Biomaterials 24 (2003) 4265

    Article  CAS  Google Scholar 

  12. C. D. YOUNG, J. R. WU and T. L. TSOU, Biomaterials 19 (1998) 1745

    Article  CAS  Google Scholar 

  13. L. AMBROSIO, R. DE SANTIS and L. NICOLAIS, Proc. Inst. Mech. Eng. 212 (1998 H) 93

    CAS  Google Scholar 

  14. L. AMBROSIO, P. A. NETTI, S. IANNACE, S. J. HUANG and L. NICOLAIS, J. Mater. Sci., Mater. Med. 7 (1996) 251

    Article  CAS  Google Scholar 

  15. T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721

    Article  CAS  Google Scholar 

  16. M. J. DALBY, L. DISILVIO, E. J. HARPER and W. BONFIELD, Biomaterials 23 (2002) 569

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support from the EC for the DISC project (G5RD-CT-2000–00267) and EPSRC UK are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Lin, Y.W., Fu, X.W. et al. Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds. J Mater Sci: Mater Med 18, 2151–2157 (2007). https://doi.org/10.1007/s10856-007-3201-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3201-8

Keywords

Navigation