Skip to main content
Log in

Protein incorporation within Ti scaffold for bone ingrowth using Sol-gel SiO2 as a slow release carrier

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Porous titanium structures hold considerable promise as scaffolds for bone ingrowth in load bearing locations provided they are made osteoinductive by incorporation of bone growth factors. The purpose of the present research was to incorporate soybean trypsin inhibitor (STI) imitating growth factor into a porous Ti scaffold using sol-gel silica as a slow-release protein carrier. Alcohol-free TMOS-based sols (of pH 2 or 5) with dissolved STI were injected into Ti wire scaffolds yielding SiO2 coating on the wire struts and SiO2 beads entrapped in-between the wires. The formation of well-polymerized nanoporous SiO2 was confirmed by FTIR, solid-state NMR, N2 adsorption/desorption isotherms and BET analysis. In-vitro dissolution of silica and STI release in phosphate buffered saline (PBS) at 37 °C were measured by ICP-AES and Bradford assay, respectively. The biochemical activity of released STI protein was assessed by enzymatic assay. STI release was found to follow an attractive pattern of rapid release during the first 5 days followed by steady slow release for over one month. Despite certain conformational changes induced by the encapsulation procedure (detected by Circular Dichroism), the released STI retained most of its biological activity, especially when silica sol was prepared at the high protein-friendly pH = 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. W. M. VEHOF, P. H. M. SPAUWEN and J. A. JANSEN, Biomaterials 21 (2000) 2003

    Article  CAS  Google Scholar 

  2. D. C. METSGER, M. R. RIEGER and D. W. FOREMAN, J. Mater. Sci.: Mater. Med. 10 (1999) 9

    Article  CAS  Google Scholar 

  3. J. C. KELLER, C. M. STANFORD, J. P. WIGHTMAN, R. A. DRAUGHN and R. ZAHARIAS, J. Biomed. Mater. Res. 28 (1994) 939

    Article  CAS  Google Scholar 

  4. M. NIINOMI, Mater. Sci. Eng. A 243 (1998) 231

    Article  Google Scholar 

  5. J. N. KEARNEY and R. J. LOMAS, Adv. Tiss. Bank. 1 (1997) 43

    Google Scholar 

  6. H. SEEHERMAN, J. Bone Joint Surg. [Am]. 83(Supp 1) (2001) S79

    Google Scholar 

  7. Y. LIU, E. B. HUNZIKER, P. LAYROLLE, J. D. de BRUIJN and K. de GROOT, Tissue Eng. 10 (2004) 101

    Article  CAS  Google Scholar 

  8. Y. LIU, K. de GROOT and E. B. HUNZIKER, Bone 36 (2005) 745

    Article  CAS  Google Scholar 

  9. S. FALAIZE, S. RADIN and P. DUCHNYNE, J. Am. Ceram. Soc. 82 (1999) 969

    Article  CAS  Google Scholar 

  10. P. SARAVANAPAVAN, J. R. JONES, R. S. PRYCE and L. L. HENCH, J. Biomed. Mater. Res. A. 66 (2003) 110

    Article  CAS  Google Scholar 

  11. I. D. XYNOS, A. J. EDGAR, L. D. K. BUTTERY, L. L. HENCH and J. M. POLAK, Biochem. Biophys. Res. Commun. 276 (2000) 461

    Article  CAS  Google Scholar 

  12. I. D. XYNOS, A. J. EDGAR, L. D. K. BUTTERY, L. L. HENCH and J. M. POLAK, J. Biomed. Mater. Res. 55 (2001) 151

    Article  CAS  Google Scholar 

  13. S. B. NICOLL, S. RADIN, E. M. SANTOS, R. S. TUAN and P. DUCHEYNE, Biomaterials. 18 (1997) 853

    Article  CAS  Google Scholar 

  14. E. M. SANTOS, S. RADIN and P. DUCHEYNE, Biomaterials. 20 (1999) 1695

    Article  CAS  Google Scholar 

  15. S. RADIN, P. DUCHEYNE, T. KAMPLAIN and B.H. TAN, J. Biomed. Mater. Res. 57 (2001) 313

    Article  CAS  Google Scholar 

  16. R. VIITALA, M. JOKINEN, S. TUUSA, J.B. ROSENHOLM and H. JALONEN, J. Sol-Gel Sci. Tech. 36 (2005) 147

    Article  CAS  Google Scholar 

  17. M. C. AGRAWAL, J. BEST, J. D. HECKMAN and B. D. BOYAN, Protein Biomater. 16 (1995) 1255

    CAS  Google Scholar 

  18. H. M. KIM, F. MIYAJI, T. KOKUBO, S. NISHIGUCHI and T. NAKAMURA, J. Biomed. Mater. Res. 45 (1999) 100

    Article  CAS  Google Scholar 

  19. D. K. EGGERS and J. S. VALENTINE, Protein Sci. 10 (2001) 250

    Article  CAS  Google Scholar 

  20. E. LIPPMAA, M. MAGI, A. SAMOSON, G. ENGELHARDT and A. R.GRIMER, J. Am. chem. Soc. 102 (1980) 4889

    Article  CAS  Google Scholar 

  21. H. K. SONG and S. W. SUH, J. Mol. Biol. 275 (1998) 347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Israel Science Foundation–ISF through research grant No. 1193/05. The authors are grateful to Prof. E.Y. Gutmanas, Faculty of Materials Engineering, Technion, and Prof. A. Schmidt, Schulich Faculty of Chemistry, Technion, for their assistance and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Gotman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiner, T., Kababya, S. & Gotman, I. Protein incorporation within Ti scaffold for bone ingrowth using Sol-gel SiO2 as a slow release carrier. J Mater Sci: Mater Med 19, 583–589 (2008). https://doi.org/10.1007/s10856-007-3194-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3194-3

Keywords

Navigation