Skip to main content

Advertisement

Log in

Self-assembly and bioactive response of a crystalline metal oxide in a simulated blood fluid

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study we report on the bioactive response of self-assembled niobium oxide microstructures when immersed in a supersaturated solution emulating mineral content in blood. The structures were formed via electrochemical anodization in an electrolyte comprised of HF and NaF. The slow oxide formation kinetics associated with the presence of NaF in the electrolyte enabled microscopic examinations during microstructure evolution as shown via scanning electron microscopy (SEM). Apparently the slow growth kinetics encourage the development of bioactive sites on the microstructures, as these structures induced mineral formations. On the other hand, microstructures grown in the absence of salt were ineffective mineral nucleators. Analysis of nucleated mineral deposits was performed using X-ray diffraction and Raman spectroscopy. Both long-range and short-range order experiments verified the nucleated mineral phase was hydroxyapatite (HAP). Further characterization of the mineral phase was observed using SEM and revealed effective nucleation sites were predominantly isolated to loci on the ordered microbodies as opposed to locations lying within the amorphous strata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. S. POSNER, Physiol. Rev. 49 (1969) 760

    CAS  Google Scholar 

  2. B. WOPENKA and J. D. PASTERIS, Mat. Sci. Eng. C 25 (2005) 131

    Article  CAS  Google Scholar 

  3. L. L. HENCH and J. WILSON, In An Introduction To Bioceramics, edited by. L. L. Hench and J. Wilson (New Jersey, World Scientific: 1993) p.1

  4. S. V. Bhat, Biomaterials, (Harrow, Alpha Science International, Ltd., 2005)

  5. L. L. HENCH and J. WILSON, Science 226 (1984) 630

    Article  CAS  Google Scholar 

  6. R. K. WOO, D. D. JENKINS and R. S. GRECO, In Nanoscale Technology in Biological Systems, edited by R. S. Greco, F. B. Prinz and R. L. Smith (Boca Raton, CRC Press, 2005), p 1

  7. D. A. PULEO and A. NANCI, Biomaterials 20 (1999) 2311

    Article  CAS  Google Scholar 

  8. P. H. WOOLEY and E. M. SCHWARZ, Gene. Ther. 11 (2004) 402

    Article  CAS  Google Scholar 

  9. A. GRATTON, B. BUFORD, T. GOSWAMI, D. GADDYKURTEN and L. SUVA, J. Mech. Behav. Mater. 13 (2002) 297

    CAS  Google Scholar 

  10. L. C. CHOW, Adv. Dent. Res. 2 (1988) 181

    CAS  Google Scholar 

  11. T. KOKUBO, H.-M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161

    Article  CAS  Google Scholar 

  12. M. UCHIDA, H.-M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, Biomaterials 23 (2002) 313

    Article  CAS  Google Scholar 

  13. L. L. HENCH and O. ANDERSSON, In An Introduction To Bioceramics, edited by L. L. Hench and Wilson J (New Jersey, World Scientific, 1993) p. 41

  14. R. XIN, Y. LENG, J. CHEN and Q. ZHANG, Biomaterials 26 (2005) 6477

    Article  CAS  Google Scholar 

  15. M. RISTIC, S. POPOVIC and S. MUSIC, Mater. Lett. 58 (2004) 2658

    Article  CAS  Google Scholar 

  16. M. A. AEGERTER, M. SCHMITT and Y. GUO, Int. J. Photoenergy 4 (2002) 1

    Article  CAS  Google Scholar 

  17. H. CHOOSUWAN, R. GUO and A. S. BHALLA, Mater. Lett. 54 (2002) 269

    Article  CAS  Google Scholar 

  18. B. OREL, U. O. KRASOVEC, M. MACEK, F. SVEGL and U. L. STANGAR, Sol. Energ. Mat. Sol. C 56 (1999) 343

    Article  CAS  Google Scholar 

  19. H. SIM, D. CHOI, D. LEE, M. HASAN, C. B. SAMANTARAY and H. HWANG, Microelectron. Eng. 80 (2005) 260

    Article  CAS  Google Scholar 

  20. D. VELTEN, E. EISENBARTH, N. SCHANNE and J. BREME, J. Mater. Sci-Mater. M 15 (2004) 457

    Article  CAS  Google Scholar 

  21. K. HONG, W. YIU, H. WU, J. GAO and M. XIE, Nanotechnology 16 (2005) 1608

    Article  CAS  Google Scholar 

  22. D. GONG, C. A. GRIMES, O. K. VARGHESE, W. HU, R. S. SINGH, Z. CHEN and E. C. DICKEY, J. Mater. Res. 16 (2001) 3331

    CAS  Google Scholar 

  23. W. J. LEE and W. H. SMYRL, Electrochem. Solid. St. 8 (2005) B7

    Article  CAS  Google Scholar 

  24. D. P. BRENNAN, A. DOBLEY, P. J. SIDERIS and S. R. J. OLIVER, Langmuir 21 (2005) 11994

    Article  CAS  Google Scholar 

  25. H. MASUDA and K. FUKUDA, Science 268 (1995) 1466

    Article  CAS  Google Scholar 

  26. G. K. MOR, O. K. VARGHESE, M. PAULOSE, N. MUKHERJEE and C. A. GRIMES, J. Mater. Res. 18 (2003) 2588

    Article  CAS  Google Scholar 

  27. W. T. CHU, H. H. LIN, Y. H. WANG, C. T. HSIEH, Y. T. LIN and C. S. WANG, IEEE Electr. Device. L 26 (2005) 670

    Article  CAS  Google Scholar 

  28. U. OZERDEM and A. R. HARGENS, Microvas. Res. 70 (2005) 116

    Article  CAS  Google Scholar 

  29. J. HAAHEIM, R. EBY, M. NELSON, J. FRAGALA, B. ROSNER, H. ZHANG and G. ATHAS, Ultramicroscopy 103 (2005) 117

    Article  CAS  Google Scholar 

  30. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA and K. de GROOT, J. Biomed. Mater. Res. 28 (1994) 7

    Article  CAS  Google Scholar 

  31. T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721

    Article  CAS  Google Scholar 

  32. J. HALBRITTER, Appl. Phys. A 43 (1987) 1

    Article  Google Scholar 

  33. M. GRUNDNER and J. HALBRITTER, Surf. Sci. 136 (1984) 144

    Article  CAS  Google Scholar 

  34. J. S. L. LEACH and B. R. PEARSON, Corros. Sci. 28 (1988) 43

    Article  CAS  Google Scholar 

  35. Q. LU, T. HASHIMOTO, P. SKELDON, G. E. THOMPSPON, H. HABAZAKI and K. SHIMIZU, Electrochem. Solid. St. 8 (2005) B17

    Article  CAS  Google Scholar 

  36. F. KELLER, M. S. HUNTER and D. L. ROBINSON, J. Electrochem. Soc. 100 (1953) 411

    Article  CAS  Google Scholar 

  37. R. L. KARLINSEY, Electrochem. Commun. 7 (2005) 1190

    Article  CAS  Google Scholar 

  38. R. L. KARLINSEY, J. Mater. Sci. 41 (2006) 5017

    Article  CAS  Google Scholar 

  39. D. C. CLUPPER, J. J. Jr. MECHOLSKY, G. P. LATORRE and D. C. GREENSPAN, Biomaterials 23 (2002) 2599

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support for this study was funded by the Oral Health Research Institute. The authors thank Ms. Y.H. Cho at National Center for Inter-University Research Facilities at Seoul National University for assistance and use of the Raman spectrometer. The authors also thank Dr. Jeffrey Swope and Mr. Vince Hernly at IUPUI for assistance with X-ray diffraction. The authors are grateful to A.T. Hara for valuable discussions and give special thanks to Clif W. Duhn for assistance with image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Lynn Karlinsey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlinsey, R.L., Yi, K. Self-assembly and bioactive response of a crystalline metal oxide in a simulated blood fluid. J Mater Sci: Mater Med 19, 1349–1354 (2008). https://doi.org/10.1007/s10856-007-3164-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3164-9

Keywords

Navigation