Skip to main content

Advertisement

Log in

Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The development of biodegradable materials for internal fracture fixation is of great interest, as they would both eliminate the problem of stress shielding and obviate the need for a second operation to remove fixation devices. Preliminary investigations for the production of degradable fiber reinforced polymer composite materials are detailed. Composites were produced of phosphate invert glass fibers of the glass system P2O5–CaO–MgO–Na2O–TiO2, which showed a low solubility in previous work. The fibers were embedded into a matrix of a degradable organic polymer network based on methacrylate-modified oligolactide. Fracture behavior, bending strength and elastic modulus were evaluated during 3-point bending tests and the fracture surface of the composites was investigated using a scanning electron microscope. Short-term biocompatibility was tested in an FDA/EtBr viability assay using MC3T3-E1 murine pre-osteoblast cells and showed a good cell compatibility of the composite materials. Results suggested that these composite materials are biocompatible and show mechanical properties which are of interest for the production of degradable bone fixation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. A. HING, Philos. Trans. R. Soc. Lond A 362 (2004) 2821

    Article  CAS  Google Scholar 

  2. T. J. CORDEN, I. A. JONES, C. D. RUDD, P. CHRISTIAN and S. DOWNES, Composites: Part A 30 (1999) 737

    Article  Google Scholar 

  3. L. CLAES, J. Orthop. Res. 7 (1989) 170

    Article  CAS  Google Scholar 

  4. S. J. FERGUSON, U. P. WYSS and D. R. PICHORA, Med. Eng. Phys. 18 (1996) 241

    Article  CAS  Google Scholar 

  5. P. TÖRMÄLÄ, Adv. Mater. Deerfield 4 (1992) 589

    Article  Google Scholar 

  6. J. F. MANO, R. A. SOUSA, L. F. BOESEL, N. M. NEVES and R. L. REIS, Compos. Sci. Technol. 64 (2004) 789

    Article  CAS  Google Scholar 

  7. D. A. RIKLI, R. CURTIS, C. SCHILLING and J. GOLDHAHN, Injury, Int. J. Care Injured 33 (2002) 77

    Google Scholar 

  8. A. SAIKKU-BÄCKSTRÖM, R. M. TULAMO, T. POHJONEN, P. TÖRMÄLÄ, J. E. RÄIHÄ and P. ROKKANEN, J. Mater. Sci: Mater. Med. 10 (1999) 1

    Article  Google Scholar 

  9. P. TÖRMÄLÄ, Clin. Mater. 10 (1992) 29

    Article  Google Scholar 

  10. V. MAQUET, A. R. BOCCACCINI, L. PRAVATA, I. NOTINGHER and R. JEROME, Biomaterials 25 (2004) 4185

    Article  CAS  Google Scholar 

  11. K. G. MARRA, J. W. SZEM, P. N. KUMTA, P. A. DIMILLA and L. E. WEISS, J Biomed. Mater. Res. 47 (1999) 324

    Article  CAS  Google Scholar 

  12. J. C. KNOWLES, G. W. HASTINGS, H. OHTA, S. NIWA and N. BOEREE, Biomaterials 13 (1992) 491

    Article  CAS  Google Scholar 

  13. G. JIANG, M. E. EVANS, I. A. JONES, C. D. RUDD, C. A. SCOTCHFORD and G. S. WALKER, Biomaterials 26 (2005) 2281

    Article  CAS  Google Scholar 

  14. E. URAL, K. KESENCI, L. FAMBRI, C. MIGLIARESI and E. PISKIN, Biomaterials 21 (2000) 2147

    Article  CAS  Google Scholar 

  15. M. A. SLIVKA, C. C. CHU and I. A. ADISAPUTRO, J. Biomed. Mater. Res. 36 (1997) 469

    Article  CAS  Google Scholar 

  16. D. S. BRAUER, C. RÜSSEL, W. LI and S. HABELITZ, J. Biomed. Mater. Res. A 77A (2006) 213

    Article  CAS  Google Scholar 

  17. A. J. PARSONS, M. EVANS, C. D. RUDD and C. A. SCOTCHFORD, J. Biomed. Mater. Res. A 71A (2004) 283

    Article  CAS  Google Scholar 

  18. J. C. KNOWLES, J. Mater. Chem. 13 (2003) 2395

    Article  CAS  Google Scholar 

  19. M. UO, M. MIZUNO, Y. KUBOKI, A. MAKISHIMA and F. WATARI, Biomaterials 19 (1998) 2277

    Article  CAS  Google Scholar 

  20. A. E. MARINO, S. R. ARRASMITH, L. L. GREGG, S. D. JACOBS, G. R. CHEN and Y. DUC, J. Non-Cryst. Solids 289 (2001) 37

    Article  CAS  Google Scholar 

  21. J. VOGEL, P. WANGE, S. KNOCHE and C. RÜSSEL, Glass Sci. Technol. 77 (2004) 82

    CAS  Google Scholar 

  22. J. C. KNOWLES and G. W. HASTINGS, J. Mater. Sci.: Mater. Med. 4 (1993) 102

    Article  CAS  Google Scholar 

  23. R. L. PRABHAKAR, S. BROCCHINI and J. C. KNOWLES, Biomaterials 26 (2005) 2209

    Article  CAS  Google Scholar 

  24. D. S. BRAUER, C. RÜSSEL, S. VOGT, J. WEISSER and M. SCHNABELRAUCH, J. Biomed. Mater. Res. A 80A (2007) 410

    Article  CAS  Google Scholar 

  25. M. NAVARRO, M. P. GINEBRA, J. A. PLANELL, S. ZEPPETELLI and L. AMBROSIO, J. Mater. Sci: Mater. Med. 15 (2004) 419

    Article  CAS  Google Scholar 

  26. K. P. ANDRIANO, A. U. DANIELS, W. P. SMUTZ, R. W. B. WYATT and J. HELLER, J. Appl. Biomater. 4 (1993) 1

    Article  CAS  Google Scholar 

  27. K. P. ANDRIANO, A. U. DANIELS and J. HELLER, J. Appl. Biomater. 3 (1992) 197

    Article  CAS  Google Scholar 

  28. P. CHRISTIAN, I. A. JONES, C. D. RUDD, R. I. CAMPBELL and T. J. CORDEN, Composites: Part A 32 (2001) 969

    Article  Google Scholar 

  29. R. L. DUNN, R. A. CASPER and B. S. KELLEY, Trans. Soc. Biomater. 8 (1985) 213

    Google Scholar 

  30. T. C. LIN, Trans. Soc. Biomater. 9 (1986) 166

    Google Scholar 

  31. K. J. LOWRY, K. R. HAMSON, L. BEAR, Y. B. PENG, R. CALALUCE, M. L. EVANS, J. O. ANGLEN and W. C. ALLEN, J Biomed. Mater. Res. 36 (1997) 536

    Article  CAS  Google Scholar 

  32. T. J. CORDEN, I. A. JONES, C. D. RUDD, P. CHRISTIAN, S. DOWNES and K. E. MCDOUGALL, Biomaterials 21 (2000) 713

    Article  CAS  Google Scholar 

  33. M. SCHNABELRAUCH, S. VOGT, Y. LARCHER and I. WILKE, Biomol. Eng. 19 (2002) 295

    Article  CAS  Google Scholar 

  34. S. VOGT, J. VOGEL and M. SCHNABELRAUCH, Eur. J. Trauma 2 (2002) 119

    Google Scholar 

  35. S. VOGT, Y. LARCHER, B. BEER, I. WILKE and M. SCHNABELRAUCH, Eur. Cell Mater. 4 (2002) 30

    CAS  Google Scholar 

  36. S. M. ZEBARJAD, Mater. & Des. 24 (2003) 531

    CAS  Google Scholar 

  37. M. C. ZIMMERMAN, H. ALEXANDER, J. R. PARSONS and P. K. BAJPAI, ACS Symp. Ser. 457 (1991) 132

    Article  CAS  Google Scholar 

  38. P. K. VALLITTU, J. Oral Rehabil. 25 (1998) 100

    Article  CAS  Google Scholar 

  39. S. VOGT, S. BERGER, I. WILKE, Y. LARCHER, J. WEISSER and M. SCHNABELRAUCH, BioMed. Mater. Eng. 15 (2005) 73

    CAS  Google Scholar 

  40. L. KROLL and W. HUFENBACH, Mech. Compos. Mater. 35 (1999) 277

    Article  Google Scholar 

  41. Y. TOMITA, T. TAMAKI and K. MORIOKA, Mater. Character. 41 (1998) 123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Jens Kobelke of the Institute for Physical High Technology (IPHT) Jena for his support with fiber production.

Financial support of this work by the Ministry of Science, Research and Art of Thuringia, Germany (grant B 478-02001) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia S. Brauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brauer, D.S., Rüssel, C., Vogt, S. et al. Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response. J Mater Sci: Mater Med 19, 121–127 (2008). https://doi.org/10.1007/s10856-007-3147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3147-x

Keywords

Navigation