Skip to main content

Advertisement

Log in

The use of long-chain plant polyprenols as a means to modify the biological properties of new biodegradable polyurethane scaffolds for tissue engineering. A pilot study

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Microporous membranes for tissue engineering were produced from new biodegradable polyurethane based on hexamethylene diisocyanate, poly(ε-caprolactone) diol and 1,4:3,6-dianhydro-d-sorbitol. The interconnected pores had an average size in the range of 5–100 μm. The tensile strength at break, the Young’s modulus and elongation at break of the membranes were 3.2 ± 0.3 MPa, 25.2 ± 1.5 MPa and 190 ± 12%, respectively, while nonporous foils from the same polymers had a tensile strength at break of 40 ± 2 MPa, a Young’s modulus of 91 ± 6 MPa, and an elongation at break of 370 ± 10%. The membranes were incubated for 10 days in a 2.65 vol% solution of long-chain plant polyprenol in n-hexane to promote their interaction with cells and tissues. The polyprenol was isolated from leaves of Magnolia cobus and was a mixture of prenol-10 and prenol-11. The prenol-impregnated membranes and nonimpregnated membranes (control) were tested in cell culture to assess whether impregnation has a beneficial effect on cell-material interaction. The cells used in the test were chondrocytes isolated from the articular-epiphyseal cartilage of leg bones of 5-day-old inbred LEW rats. The time of culture was 2 and 5 weeks. Both, the nonimpregnated and impregnated polyurethane membranes supported attachment and growth of rat chondrocytes. The cells firmly attached to the surface of the microporous membranes, invaded the pores and maintained the round shape characteristic for chondrocyte-like-morphology. Abundant fibrillar extracellular matrix produced by the cells resembled the network formed by chondrocytes in vivo. The cells produced relatively more extracellular matrix in the membranes impregnated with polyprenol than in the control membranes. Impregnation of polyurethane scaffolds with biologically active amphiphilic polyprenols may be a route to facilitate the cell–material interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. GOGOLEWSKI, A. J. PENNINGS, E. LOMMEN, P. NIEUWENHUIS and CH. R. H. WILDEVUUR, Makromol. Chem. Rapid Commun. 4 (1983) 213

    Article  CAS  Google Scholar 

  2. S. GOGOLEWSKI and A. J. PENNINGS, Makromol. Chem. Rapid Commun. 4 (1983) 675

    Article  CAS  Google Scholar 

  3. S. GOGOLEWSKI and A. J. PENNINGS, Artif. Organs 7 (1983) 30

    Google Scholar 

  4. S. GOGOLEWSKI and G. GALLETTI, Colloid Polymer Sci. 264 (1986) 854

    Article  CAS  Google Scholar 

  5. S. GOGOLEWSKI, G. GALLETTI and G. USSIA, Colloid Polym. Sci. 265 (1987) 774

    Article  CAS  Google Scholar 

  6. G. GALLETTI, S. GOGOLEWSKI, G. USSIA and F. FARUGGIA, Ann. Vasc. Surg. 3 (1989) 236

    Article  CAS  Google Scholar 

  7. G. GALLETTI, G. USSIA, F. FARUGGIA, E. BACCARINI and S. GOGOLEWSKI, Ital. J. Surg. Sci. 19 (1989) 121

    CAS  Google Scholar 

  8. S. GOGOLEWSKI, in “Desk Reference of Functional Polymers. Syntheses and Applications”, Edited by: R. ARSHADY (American Chemical Society, Washington, DC, 1996) p. 657

  9. K. GORNA and S. GOGOLEWSKI, in “Synthetic Bioabsorbable Polymers for Implants”, Edited by: C. M. AGRAWAL, J. E. PARR and S.T. LIN (American Society for Testing and Materials, West Conshohocken, PA, 2000) p. 39

  10. K. GORNA, PhD Thesis, Technical University of Lodz, Lodz, Poland (2002)

  11. K. GORNA and S. GOGOLEWSKI, Polymer Degrad. Stab. 79 (2003) 475

    Article  CAS  Google Scholar 

  12. K. GORNA and S. GOGOLEWSKI, Polymer Degrad. Stab. 75 (2002) 113

    Article  CAS  Google Scholar 

  13. K. GORNA and S. GOGOLEWSKI, J. Biomed. Mater. Res. 79 (2006) 128 Published Online: 15 Jun 2006, DOI: 10.1002/jbm.a.30708

    Article  CAS  Google Scholar 

  14. K. GORNA and S. GOGOLEWSKI, Transactions, European Society for Biomaterials Meeting. Sorrento, Italy, September 11–15 (2005)

  15. K. GORNA and S. GOGOLEWSKI, J. Biomed. Mater. Res 67A (2003) 813

    Article  CAS  Google Scholar 

  16. K. GORNA, S. POLOWINSKI and S. GOGOLEWSKI, J. Polym. Sci: A. Polym. Chem. 40 (2002) 156

    Article  CAS  Google Scholar 

  17. F. W. HEMMING, in “Biochemistry”, Edited by: T. W. GOODWIN, series 1, Vol. 4 (Butterworths, London, 1974) p. 39

  18. T. CHOJNACKI, E. SWIEZEWSKA and T. VOGTMAN, Chem. Scripta 27 (1987) 209

    CAS  Google Scholar 

  19. T. CHOJNACKI and E. SWIEZEWSKA, in “Dolichols Polyprenols and Derivatives, Collection of Polyprenols”, 1st edn. (Warszawa, 1995) p. 17

  20. N. K. KHIDYROVA and Kh. M. SHAKHIDOYATOV, Chem. Nat. Compd. 38 (2002) 107

    Google Scholar 

  21. W. KOROHODA, J. STANISZ, A. STANISZ, T. CHOJNACKI, G. PALAMARCZYK and A. RADOMIŃSKA-PYREK, Eur. J. Cell Biol. 21 (1980) 239

    CAS  Google Scholar 

  22. J. BURGOS, F. HEMMING, J. F. PENNOCK and R. A. MORTON, Biochem. J. 88 (1963) 470

    CAS  Google Scholar 

  23. R. WELLBURN and F. HEMMING, Phytochemistry 5 (1966) 969

    Article  CAS  Google Scholar 

  24. P. R. CULLIS and M. J. HOPE, in “Biochemistry of Lipids” (Vance & Vance, Elsevier, Amsterdam, 1991) p. 17

  25. N. F. HADLEY, in “The Adaptive Role of Lipids in Biological Systems” (Wiley, New York, 1985), p. 57

  26. T. M. KOYAMA, C. R. STEVENS, E. J. BORDA, K. J. GROBE and D. A. CLEARY, Chem. Educ. 4 (1999) 12

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (K. Walinska) would like to thank Professor Tadeusz Chojnacki, Professor Ewa Świeżewska and co-workers from the Department of Lipid Biochemistry, IBB PAS, Warsaw, for making possible the isolation of polyprenols; Professor Stanisław Moskalewski and Doctor Ewa Jankowska from The Medical University of Warsaw, for making possible the cell culture experiments; and Professor Elżbieta Wyroba and co-workers from the Nencki Institute of Experimental Biology, PAS, Warsaw, for making possible SEM evaluation of cell cultured scaffolds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyna Walinska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walinska, K., Iwan, A., Gorna, K. et al. The use of long-chain plant polyprenols as a means to modify the biological properties of new biodegradable polyurethane scaffolds for tissue engineering. A pilot study. J Mater Sci: Mater Med 19, 129–135 (2008). https://doi.org/10.1007/s10856-007-3146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3146-y

Keywords

Navigation