Skip to main content
Log in

PET fiber fabrics modified with bioactive titanium oxide for bone substitutes

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A rectangular specimen of polyethylene terephthalate (PET) was soaked in a titania solution composed of titanium isopropoxide, water, ethanol and nitric acid at 25 °C for 1 h. An amorphous titanium oxide was formed uniformly on the surface of PET specimen, but did not form an apatite on its surface in a simulated body fluid (SBF) within 3 d. The PET plate formed with the amorphous titanium oxide was subsequently soaked in water or HCl solutions with different concentrations at 80 °C for different periods of time. The titanium oxide on PET was transformed into nano-sized anatase by the water treatment and into nano-sized brookite by 0.10 M HCl treatment at 80 °C for 8 d. The former did not form the apatite on its surface in SBF within 3 d, whereas the latter formed the apatite uniformly on its surface. Adhesive strength of the titanium oxide and apatite layers to PET plate was increased by pre-treatment of PET with 2 wt% NaOH solution at 40 °C for 2 h. A two-dimensional fabric of PET fibers 24 μm in diameter was subjected to the NaOH pre-treatment at 40 °C, titania solution treatment at 25 °C and subsequent 0.10 M HCl treatment at 80 °C. Thus treated PET fabric formed the apatite uniformly on surfaces of individual fibers constituting the fabric in SBF within 3 d. Two or three dimensional PET fabrics modified with the nano-sized brookite on surfaces of the individual fibers constituting the fabric by the present method are believed to be useful as flexible bone substitutes, since they could be integrated with living bone through the apatite formed on their constituent fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. L. HENCH , R. J. SPLINTER, W. C. ALLEN and T. K. GREENLEE, J. Biomed. Mater. Res. Symp. 2 (1971) 117

    Article  Google Scholar 

  2. T. KOKUBO , M. SHIGEMATSU, Y. NAGASHIMA, T. NAKAMURA, T. YAMAMURO and S. HIGASHI, Bull. Inst. Chem. Res. Kyoto Univ. 60 (1982) 260

    CAS  Google Scholar 

  3. M. JARCHO, J. L. KAY, R. H. GUMAER, R. H. DOREMUS and H. P. DROBECK, J. Bioeng. 1 (1977) 79

    CAS  Google Scholar 

  4. B. V. REJDA , J. G. J PEELEN and K. de GROOT, J. Bioeng. 1 (1977) 93

    CAS  Google Scholar 

  5. H.-M. KIM , F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 32 (1996) 409

    Article  CAS  Google Scholar 

  6. T. MIYAZAKI , H.-M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 50 (2000) 35

    Article  CAS  Google Scholar 

  7. W. BONFIELD , M. D. GRYNPAS, A. E. TULLY, J. BOWMAN and J. ABRAM, Biomaterials 2 (1981) 185

    Article  CAS  Google Scholar 

  8. W. BONFIELD, An Introduction to Bioceramics, edited by L. L. HENCH and J. WILSON (World Scientific Publishing Co. Pte. Ltd.: Singapore, 1993) p. 299

  9. L. L. HENCH , J. Am. Ceram. Soc. 74 (1991) 1487

    Article  CAS  Google Scholar 

  10. L. L. HENCH , J. Am. Ceram. Soc. 81 (1998) 1705

    Article  CAS  Google Scholar 

  11. M. HASHIMOTO , H. TAKADAMA, M. MIZUNO, Y. YASUTOMI and T. KOKUBO, Key Eng. Mater. 240–2 (2003) 415

    Google Scholar 

  12. H. TAKADAMA , M. HASHIMOTO, Y. TAKIGAWA, M. MIZUNO, Y. YASUTOMI and T. KOKUBO, Key Eng. Mater. 240–2 (2003) 951

    Article  Google Scholar 

  13. H. TAKADAMA , M. HASHIMOTO, Y. TAKIGAWA, M. MIZUNO and T. KOKUBO, Key Eng. Mater. 254–2 (2004) 569

    Google Scholar 

  14. M. HASHIMOTO , H. TAKADAMA, M. MIZUNO and T. KOKUBO, Mater. Res. Bull. 41 (2006) 515

    Article  CAS  Google Scholar 

  15. F. BALAS, T. KOKUBO, M. KAWASHITA and T. NAKAMURA, J. Mater. Sci.: Mater. Med (in press)

  16. T. KOKUBO , H.-M. KIM, M. KAWASHITA, Biomaterials 24 (2003) 2161

    Article  CAS  Google Scholar 

  17. T. KOKUBO , H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721

    Article  CAS  Google Scholar 

  18. S. H. TEOH, Z. G. TANG and G. W. HASTINGS, Handbook of Biomaterials Properties, edited by J. BLACK and G. HASTINGS (Chapman & Hall, London, 1998) p. 281

  19. D. J. DANDY and A. J. R GRAY, J. Bone Joint Surg. 76B (1994) 193

    Google Scholar 

  20. K. FUJIKAWA , T. OHTANI, H. MATSUMOTO and B. B. SEEDHOM, J. Bone Joint Surg. 76B (1994) 200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Kawashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokubo, T., Ueda, T., Kawashita, M. et al. PET fiber fabrics modified with bioactive titanium oxide for bone substitutes. J Mater Sci: Mater Med 19, 695–702 (2008). https://doi.org/10.1007/s10856-007-3103-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3103-9

Keywords

Navigation