Skip to main content
Log in

Fatigue crack propagation under variable amplitude loading in PMMA and bone cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fatigue failure of PMMA bone cement is an important factor in the failure of cemented joint replacements. Although these devices experience widely varying loads within the body, there has been little or no study of the effects of variable amplitude loading (VAL) on fatigue damage development.

Fatigue crack propagation tests were undertaken using CT specimens made from pure PMMA and Palacos R bone cement. In PMMA, constant amplitude loading tests were carried out at R- ratios ranging from 0.1 to 0.9, and VAL tests at R = 0.1 with 30% overloads every 100 cycles. Palacos R specimens were tested with and without overloads every 100 cycles and with a simplified load spectrum representing daily activities.

The R- ratio had a pronounced effect on crack propagation in PMMA consistent with the effects of slow crack growth under constant load. Single overloads caused pronounced crack retardation, especially at low da/dN. In Palacos R, similar overloads had little effect, whilst individual overloads at low da/dN caused pronounced acceleration and spectrum loading retarded crack growth relative to Paris Law predictions.

These results demonstrate that VAL can have dramatic effects on crack growth, which should be considered when testing bone cements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. FAULKNER, L. G. KENNEDY, K. BAXTER, J. DONOVAN, M. WILKINSON and G. BEVAN, Health Technol. Assess. 2(6) (1998) 1

    CAS  Google Scholar 

  2. M. JASTY, W. J. MALONEY, C. R. BRAGDON, D. O. O’CONNOR, T. HAIRE and W. H. HARRIS, J. Bone Joint Surg. 73B(4) (1991) 551

    Google Scholar 

  3. P. Erani, P. Savigni, L. Cristofolini and M. Viceconti, In Proc. of the European Society of Biomechanics, ‘s-Hertogenbosch, Holland, July 2004

  4. P. ASPENBERG and H. VANDERVIS, Acta Orthop. Scand. 69(1) (1998) 1

    Article  CAS  Google Scholar 

  5. S. K. BHAMBRI and L. N. GILBERTSON, J. Biomed. Mat. Res. 29 (1995) 233

    Article  CAS  Google Scholar 

  6. S. P. JAMES, M. JASTY, J. DAVIES, H. PIEHLER and W. H. HARRIS, J. Biomed. Mat. Res. 26 (1992) 651

    Article  CAS  Google Scholar 

  7. N. DUNNE, J. F. ORR, M. T. MUSHIPE and R. J. EVELEIGH, Biomaterials 24 (2003) 239

    Article  CAS  Google Scholar 

  8. J. P. DAVIES and W. H. HARRIS, Clin. Orthop. Rel. Res. 254 (1990) 261

    Google Scholar 

  9. G. LEWIS, S. JANNA and M. CARROLL, Biomaterials 24 (2003) 1111

    Article  CAS  Google Scholar 

  10. M. BALEANI, L. CRISTOFOLINI, C. MINARI and A. TONI, Proc. Instn. Mech. Engrs., Part H, J. Eng. Med. 217(1) (2003) 9

    CAS  Google Scholar 

  11. G. LEWIS, J. Biomed. Mat. Res. 66B(1) (2003) 457

    Article  CAS  Google Scholar 

  12. L. CRISTOFOLINI, A. S. TEUTONICO, L. MONTI, A. CAPPELLO and A. TONI, J. Biomech. 36(11) (2003) 1603

    Article  Google Scholar 

  13. C. M. RIMNAC, T. M. WRIGHT and D. L. MCGILL, J. Bone Joint Surg. 68A (1986) 281

    Google Scholar 

  14. N. C. NGUYEN, W. J. MALONEY and R. H. DAUSKARDT, J. Mat. Sci.: Mater. Med. 8(8) (1997) 473

    Article  CAS  Google Scholar 

  15. S. ISHIHARA, A. J. MCEVILY, T. GOSHIMA, K. KANEKASU and T. NARA, J. Mat. Sci.: Mater. Med. 11(10) (2000) 661

    Article  CAS  Google Scholar 

  16. J. M. MANERO, M. P. GINEBRA, F. J. GIL, J. A. PLANELL, J. A. DELGADO, L. MOREJON, A. ARTOLA, M. GURRUCHAGE and I. GONI, Proc. Instn. Mech. Engrs., Part H, J. Eng. Med. 218 (2004) 167

    CAS  Google Scholar 

  17. S. SCHMITT, D. J. KRZYPOW and C. M. RIMNAC, Biomed. Tech. (Berl.) 49(3) (2004) 61

    CAS  Google Scholar 

  18. E. Piazza, M. Baleani, L. Cristofolini and A. Toni, In Proc. 12th Conference of the European Society of Biomechanics, Dublin, 2000

  19. B. K. C. YUEN and F. TAHERI, Polymer Testing 23(5) (2004) 491

    Article  CAS  Google Scholar 

  20. M. SKORUPA, Fatigue Fract. Engng. Mater. Struct. 22(10) (1999) 905

    Article  CAS  Google Scholar 

  21. C. M. STYLES, S. L. EVANS and P. J. GREGSON, Biomaterials 19 (1998) 1057

    Article  CAS  Google Scholar 

  22. G. BERGMANN, G. DEURETZBACHER, M. HELLER, F. GRAICHEN, A. ROHLMANN, J. STRAUSS and G. N. DUDA, J. Biomech. 34(7) (2001) 859

    Article  CAS  Google Scholar 

  23. P. W. BEAUMONT and R. J. YOUNG, J. Biomed. Mat. Res. 9 (1975) 423

    Article  CAS  Google Scholar 

  24. G. C. PULOS and W. G. KNAUSS, Int. J. Fract. 93(1–4) (1998) 161

    Article  CAS  Google Scholar 

  25. L. D. T. TOPOLESKI, P. DUCHEYNE and J. M. CUCKLER, Biomaterials 14(15) (1993) 1165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, S.L. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement. J Mater Sci: Mater Med 18, 1711–1717 (2007). https://doi.org/10.1007/s10856-007-3021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3021-x

Keywords

Navigation