Skip to main content
Log in

Apatite formation and cellular response of a novel bioactive titanium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The modification of titanium and titanium alloy surface properties by chemical and electrochemical techniques has opened new possibilities to improve the bioactivity and, in general, the biological performance of the implants once in vivo. One of the main aims is the achievement of a surface oxide layer that stimulates hydroxylapatite mineralization and, also, shows osteoconductive properties once in the host. In the present study, two different bioactive surfaces have been prepared following the method purposed by the group of Kokubo and a new method, BioSpark™, involving high voltage anodic polarisation and alkali etching both on surface mineralization potential. The aim of the present work was to evaluate and compare the mineralization capability and the early cell response of titanium modified with a new bioactive method and with a well-known and widely tested biomimetic treatment, both compared to non treated titanium. Physical and chemical (energy dispersion spectroscopy, thin film X-ray diffractometry) and morphological (scanning electron microscopy) characterisation of the novel surface features has been performed. Also the effect of the novel surface properties on both hydroxyapatite precipitation and early cellular response has been investigated using in vitro models. The results have shown that both treatments produce an active outer layer on titanium but do not impair cells activity and support osteoblasts processes. BioSpark™ showed high bioactivity and good mineral phase deposition even after early incubation time, these properties were found in Kokubo’s surface as previously published. Mineralisation mechanisms of the two materials were different, and while this mechanisms was well characterised and reported for Kokubo’s surface, it was still unclear for BioSpark™. In this paper an explanation was given and catalytic properties of the latter surface was bound to both well known crystal titanium oxide exhibiting anatase lattice and a certain level of calcium and phosphorus doping, which promoted chemical and physical variation in anatase properties. At the same time early osteoblasts response to Kokubo’s and BioSpark™’s surface was characterised and, no significant differences was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References:

  1. BANGCHENG YANG, MASAIKI UCHIDA, HYUN-MIN KIM, XINGDONG ZHANG and TADASHI KOKUBO, Biomaterials 25 (2004) 1003

    Article  CAS  Google Scholar 

  2. MEI WEI, MASAKI UCHIDA, HYUN-MIN KIM, TADASHI KOKUBO and TAKASHI NAKAMURA, Biomaterials 23 (2002) 167

    Article  CAS  Google Scholar 

  3. S. KANEKO, K. TSURU, S. HAYAKAWA, S. TAKEMOTO, C. OHTSUKI, T. OZAKI, H. INOUE and A. OSAKA, Biomaterials 22 (2001) 875

    Article  CAS  Google Scholar 

  4. E. SANDRINI, R. CHIESA, G. RONDELLI, M. SANTIN and A. CIGADA, J. Appl. Biomater. Biomechan. 1 (2003) 33

    CAS  Google Scholar 

  5. R. D. BLOEBAUM and J. A. DUPONT, J. Arthroplasty 8 (1993) 195

    CAS  Google Scholar 

  6. P. BUMA and J. W. GARDENIERS, J. Arthroplasty 10 (1995) 389

    CAS  Google Scholar 

  7. X. S. ZHANG, P. A. REVELL, M. A. EVANS, M. A. TUKE and P. J. GREGSON, J. Biomed. Mater. Res. 46 (1999) 279

    Article  CAS  Google Scholar 

  8. T. W. BAUER, R. C. GEESINK, R. ZIMMERMANN and J. T. MAMAHON, J. Bone Joint Surg. 73 (1991) 1439

    CAS  Google Scholar 

  9. T. HANAWA and M. OTA, Biomaterials 12 (1991) 767

    Article  CAS  Google Scholar 

  10. T. HANAWA, K. ASAMI and A. ASAOKA, J. Biomed. Mater. Res. 40 (1998) 530

    Article  CAS  Google Scholar 

  11. F. BARRERE, P. LAYROLLE, C. A. VAN BLITTERSWIJK and K. DE GROOT, Bone 25 (1999) 107S

    Article  CAS  Google Scholar 

  12. H. M. KIM, Y. KIM, S. J. PARK, C. REY, H. LEE, M. J. GLIMCHER and J. S. KO, Biomaterials 21 (2000) 1129

    Article  CAS  Google Scholar 

  13. O. L. FENG, F. Z. CIU, H. WANG, T. N. KIM and J. O. KIM, J. Cryst. Growth 210 (2000) 735

    Article  CAS  Google Scholar 

  14. H. B. WEN, J. R. DE WIJN and K. DE GROOT, J. Biomed. Mater. Res. 41 (1998) 227

    Article  CAS  Google Scholar 

  15. T. HANAWA, M. KON, H. UKAI, K. MURAKAMI, J. MIYAMOTO and K. ASAOKA, J. Biomed. Mater. Res. 34 (1997) 272

    Article  Google Scholar 

  16. C. OHTSUKI, H. IDA, S. HAYAKAWA and A. OSAKA, J. Biomed. Mater. Res. 35 (1997) 39

    Article  CAS  Google Scholar 

  17. T. KOKUBO, P. LI, C. OHTSUKI, K. NAKANISHI, N. SOGA and K. DE GROOT, J. Biomed. Mater. Res. 28 (1994) 7

    Article  Google Scholar 

  18. T. KOKUBO, H. KIM, F. MIYAJI and T. NAKAMURA, J. Biomed. Mat. Res. 32 (1996) 409

    Article  Google Scholar 

  19. T. KOKUBO, H. KIM, M. OKA, M. NAO, H. KATO, S. NISIGUSHI, T. NAKAMURA, J. Biomed. Mater. Res. 54 (2001) 198

    Article  Google Scholar 

  20. T. KOKUBO, H. KIM, J. TAMURA, S. NISIGUSHI, T. NAKAMURA, S. FUJIBAYASHI and M. UCHIDA, J. Biomed. Mater. Res. 56 (2001) 562

    Article  Google Scholar 

  21. FUJIBAYASHI SHUNSUKE, MASASHI NEO, HYUN-MIN KIM, TADASHI KOKUBO and TAKASHI NAKAMURA, Biomaterials 25 (2004) 443

    Article  Google Scholar 

  22. R. CHIESA, E. SANDRINI, G. RONDELLI, M. SANTIN and A. CIGADA, J. Appl. Biomater. Biomech. 1(2) (2003) 91

    CAS  Google Scholar 

  23. Kurze, Kryssman, Dittrich, Schneider. Process Charachteristics and Parameters of Anodic Oxidation by Spark Deposition (ANOF). Crystal Res. Technol. 19 (1984) 973

  24. Kurze, Kryssman, Dittrich, Schneider. Structure and Properties of ANOF Layers. Crystal Res. Technol. 19 (1984) 93

  25. E. Sandrini, R. Chiesa, G. Rondelli, M. Santin and A. Cigada. Biomimetic treatments for an improved osteointegration of orthopaedic and dental prostheses . Bachelor Thesis Politecnico di Milano 2002 ; T.D.L. 10116 : 0TN900006823

  26. H. M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Ceramic Soc Jpn 105 (1997) 111

    CAS  Google Scholar 

  27. TADASHI KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721

    Article  CAS  Google Scholar 

  28. C. GIORDANO, E. SANDRINI, B. DEL CURTO, E. SIGNORELLI and L. DI SILVIO, J. Appl. Biomater. Biomech. 2 (2004) 35

    CAS  Google Scholar 

  29. M. TEXTOR, C. SITTIG, V. FRAUCHIGER, S. TOSATTI and D. BRUNETTE, Titanium Med. 7 (2001) 171

    Google Scholar 

  30. M. C. BRIAM, Nature 260 (1976) 727

    Article  Google Scholar 

  31. X. X. WANG, S. HAYAKAWA, K. TSURU and A. OSAKA, J. Biomed. Mater. Res. 52 (2000) 171

    Article  CAS  Google Scholar 

  32. J. Y. MARTIN, Z. SCHWARTZ, T. W. HUMMERT, T. M. SCHRAUB, J. SIMPSON, J. LANKFORD, D. D. DEAN and D. L. COCHRAN, J. Biomed. Mater. Res. 29 (1995) 389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors wish to thank the microanalysis SAMM staff––Politecnico di Milano-Italy for their technical support and NanoSurfaces s.r.l., for providing the BSP treated materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Sandrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandrini, E., Giordano, C., Busini, V. et al. Apatite formation and cellular response of a novel bioactive titanium. J Mater Sci: Mater Med 18, 1225–1237 (2007). https://doi.org/10.1007/s10856-007-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-0122-5

Keywords

Navigation