Advertisement

Ion leaching of a glass-ionomer glass: an empirical model and effects on setting characteristics and strength

  • Leon H Prentice
  • Martin J TyasEmail author
  • Michael F Burrow
Article

Abstract

The release of ions from a glass-ionomer glass, which in the polyacid matrix effects the cross-linking and setting of a cement, can be modelled and initiated by acid-treatment in a dilute acid. This study examined the effect of time of acetic acid leaching on the working time, setting time, and strength of a model GIC. A reactive fluoride glass was immersed in hot acetic acid for 0 (control), 5, 15, 35, 65, 95 and 125 min, filtered and dried. The glass was mixed with an experimental GI liquid in a capsule system and the mixed pastes assessed for working and initial setting time. Compressive strength testing was undertaken according to ISO9917:2003. Immersion time had a significant effect on both working and setting time of the resultant pastes only up to 65 min of immersion, and corresponded with a thin-film ion diffusion model. Compressive strength did not vary significantly with immersion time. The glass-ionomer setting reaction can be conveniently retarded by immersion of the powder in acetic acid, without affecting strength. A reactivity model was developed, whereby the effects of various changes to the leaching process may be usefully examined.

Keywords

Compressive Strength Immersion Time Compressive Strength Testing Initial Setting Time Capsule System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. CRISP and A. D. WILSON, J. Dent. Res. 53 (1974) 1409.Google Scholar
  2. 2.
    S. G. GRIFFIN and R. G. HILL, Biomaterials 20 (1999) 1579.CrossRefGoogle Scholar
  3. 3.
    S. G. GRIFFIN and R. G. HILL, Biomaterials 21 (2000) 399.CrossRefGoogle Scholar
  4. 4.
    E. DE BARRA and R. G. HILL, Biomaterials 21 (2000) 563.CrossRefGoogle Scholar
  5. 5.
    S. G. GRIFFIN and R. G. HILL, Biomaterials 21 (2000) 693.CrossRefGoogle Scholar
  6. 6.
    B. S. LIM, H. J. MOON, K. W. BAEK, S. H. HAHN and C. W. KIM, Am. J. Dent. 14 (2001) 241.Google Scholar
  7. 7.
    P. N. R. PEREIRA, S. INOKOSHI and J. TAGAMI, J. Dent. 26 (1998) 505.CrossRefGoogle Scholar
  8. 8.
    G. WESTERMAN, J. HICKS and C. FLAITZ, J. Dent. Child. 67 (2000) 385.Google Scholar
  9. 9.
    E. A. WASSON and J. W. NICHOLSON, J. Dent. Res. 72 (1993) 481.Google Scholar
  10. 10.
    K. J. ANUSAVICE and N. Z. ZHANG, J. Dent. Res. 77 (1998) 1553.Google Scholar
  11. 11.
    P. MILLEDING, A. WENNERBERG, S. ALAEDDIN, S. KARLSSON and E. SIMON, Biomaterials 20 (1999) 733.CrossRefGoogle Scholar
  12. 12.
    P. MILLEDING, C. HARALDSSON and S. KARLSSON, J. Biomed. Mater. Res. 61 (2002) 541.CrossRefGoogle Scholar
  13. 13.
    E. A. P. DE MAEYER, R. M. H. VERBEECK and C. W. J. VERCRUYSSE, J. Dent. Res. 78 (1999) 1312.Google Scholar
  14. 14.
    E. A. P. DE MAEYER, R. M. H. VERBEECK and C. W. J. VERCRUYSSE, J. Dent. Res. 77 (1998) 2005.Google Scholar
  15. 15.
    T. I. BARRY, D. J. CLINTON and A. D. WILSON, J. Dent. Res. 58 (1979) 1072.Google Scholar
  16. 16.
    E. A. P. DE MAEYER and R. M. H. VERBEECK, J. Dent. Res. 80 (2001) 1764.Google Scholar
  17. 17.
    A. RAFFERTY, R. HILL and D. WOOD, J. Mater. Sci. 35 (2000) 3863.CrossRefGoogle Scholar
  18. 18.
    A. RAFFERTY, R. HILL, B. KELLEHER and T. O’DWYER, J. Mater. Sci. 38 (2003) 3891.CrossRefGoogle Scholar
  19. 19.
    A. RAFFERTY, R. G. HILL and D. WOOD, J. Mater. Sci. 38 (2003) 2311.CrossRefGoogle Scholar
  20. 20.
    R. J. G. DE MOOR and R. M. H. VERBEECK, Dent. Mater. 14 (1998) 261.CrossRefGoogle Scholar
  21. 21.
    M. SCHWEIGER, P. GRONING, L. SCHLAPBACH, W. HØ LAND and V. RHEINBERGER, J. Therm. Anal. 60 (2000) 1009.CrossRefGoogle Scholar
  22. 22.
    T. MAEDA, K. MUKAEDA, T. SHIMOHIRA and S. KATSUYAMA, J. Dent. Res. 78 (1999) 86.CrossRefGoogle Scholar
  23. 23.
    A. M. GATTI, G. VALDRE and O. H. ANDERSSON, 15 (1994) 208.Google Scholar
  24. 24.
    J. A. WILLIAMS, R. W. BILLINGTON and G. J. PEARSON, Biomaterials 23 (2002) 2191.CrossRefGoogle Scholar
  25. 25.
    ISO, in “ISO9917 Dental water-based cements” (International Organization for Standardization, Geneva, 2003).Google Scholar
  26. 26.
    J. M. COULSON and J. F. RICHARDSON, in “Chemical engineering. Volume 2: particle technology and separation processes” (Butterworth-Heinemann, Oxford, 1991).Google Scholar
  27. 27.
    G. J. P. FLEMING, A. A. FAROOQ and J. E. BARRALET, Biomaterials 24 (2003) 4173.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Leon H Prentice
    • 1
  • Martin J Tyas
    • 1
    Email author
  • Michael F Burrow
    • 1
  1. 1.School of Dental ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations