On the measurement of human osteosarcoma cell elastic modulus using shear assay experiments

  • Yifang Cao
  • Randy Bly
  • Will Moore
  • Zhan Gao
  • Alberto M. Cuitino
  • Wole SoboyejoEmail author


This paper presents a method for determining the elastic modulus of human osteosarcoma (HOS) cells. The method involves a combination of shear assay experiments and finite element analysis. Following in-situ observations of cell deformation during shear assay experiments, a digital image correlation (DIC) technique was used to determine the local displacement and strain fields. Finite element analysis was then used to determine the Young’s moduli of HOS cells. This involved a match of the maximum shear stresses estimated from the experimental shear assay measurements and those calculated from finite element simulations.


Wall Shear Stress Digital Image Correlation Maximum Shear Stress Cell Deformation Rear Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. KAPUR, D. J. BAYLINK and K. W. LAU, Bone 32 (2003) 241.CrossRefGoogle Scholar
  2. 2.
    E. A. NAUMAN, R. L. SATCHER, T. M. KEAVENY, B. P. HALLORAN and D. D. BIKLE, J. Appl. Physiol. 90 (2001) 1849.Google Scholar
  3. 3.
    V. I. SIKAVITSAS, J. S. TEMENO and A. G. MIKOS, Biomaterials. 22 (2001) 2581.CrossRefGoogle Scholar
  4. 4.
    J. G. MCGARRY, J. KLEIN-NULEND, M. G. MULLENDER and P. J. PRENDERGAST, Faseb J. 18 (2004) 1.CrossRefGoogle Scholar
  5. 5.
    U. LIEGIBEL, U. SOMMER, B. BUNDSCHUH, B. SCHWEIZER, U. HISCHER, A. LIEDER, P. NAWROTH and C. KASPERK, Exper. Clin. Endocrinol. Diab. 112 (2004) 356.CrossRefGoogle Scholar
  6. 6.
    X. E. GUO, E. TAKAI, K. LIU and X. WANG, in Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition (New York, NY, Nov. 2001), BED-23160 p. 1.Google Scholar
  7. 7.
    G. T. CHARRAS and M. A. HORTON, Biophys. J. 83 (2002) 858.CrossRefGoogle Scholar
  8. 8.
    G. BAO and S. SURESH, Nature Mater. 2 (2003) 715.CrossRefGoogle Scholar
  9. 9.
    C. ZHU, G. BAO and N. WANG, Annu. Rev. Biomed. Eng. 2 (2000) 189.CrossRefGoogle Scholar
  10. 10.
    Y. WANG and A. M. CUITINO, Int. J. Sol. Struct. 39 (2002) 3777.CrossRefGoogle Scholar
  11. 11.
    D. SHIN and K. ATHANASIOU, J. Orthop. Res. 17 (1999) 880.CrossRefGoogle Scholar
  12. 12.
    J. CAO, B. DONELL, D. R. DEAVER, M. B. LAWRENCE and C. DONG, Microv. Res. 55 (1998) 124.CrossRefGoogle Scholar
  13. 13.
    S. B. BROOKS and A. TOZEREN, Comp. Fluids 25 (1996) 741.CrossRefGoogle Scholar
  14. 14.
    K.-J. BATHE, in “Finite Element Procedures” (Prentice Hall, Englewood Cliffs, New Jersey, 2003).Google Scholar
  15. 15.
    C. DONG and X. X. LEI, J. Biomech. 33 (2000) 35.CrossRefGoogle Scholar
  16. 16.
    T. OHASHI, Y. ISHII, Y. ISHIKAWA, T. MATSUMOTO and M. SATO, Bio-Medical Mater. Eng. 12 (2002) 319.Google Scholar
  17. 17.
    G. GIVELEKOGLU-SCHOLEY, A. W. ORR, I. NOVAK, J. J. MEISTER, M. A. SCHWARTZ and A. MOGILNER, J. Theor. Biol. 232 (2005) 569.CrossRefGoogle Scholar
  18. 18.
    E. DECAVE, D. RIEU, J. DALOUS, S. FACHE, Y. BRECHET, B. FOURCADE, M. SATRE and F. BRUCKERT, J. Cell Sci. 116 (2003) 4331.CrossRefGoogle Scholar
  19. 19.
    C. M. LO and J. FERRIER, Eur. Biophys. J. 28 (1999) 112.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Yifang Cao
    • 1
    • 2
  • Randy Bly
    • 1
    • 2
  • Will Moore
    • 1
    • 2
  • Zhan Gao
    • 3
  • Alberto M. Cuitino
    • 3
  • Wole Soboyejo
    • 1
    • 2
    Email author
  1. 1.Princeton Institute for the Science and Technology of MaterialsPrinceton
  2. 2.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrinceton
  3. 3.Department of Mechanical and Aerospace EngineeringRutgers UniversityPiscataway

Personalised recommendations