Contact damage in an yttria stabilized zirconia: Implications

  • J. ZhouEmail author
  • J. Mah
  • P. Shrotriya
  • C. Mercer
  • W. O. Soboyejo


This paper presents the results of a combined experimental and computational study of contact damage in a 3 mole% yttria partially stabilized zirconia (3-YSZ) that is relevant to hip implants and dental restorations. Contact-induced loading in real applications is idealized using Hertzian contact model to explain plasticity phenomena and failure mechanisms observed under monotonic and cyclic loading. Under monotonic loading, the elastic moduli increase with increasing loading levels. Under cyclic loading, the ceramic specimens fail with progressive cone cracking. X-ray analyses reveal that stress-induced phase transformation (from tetragonal to monoclinic phases) occurs under cyclic contact loading above the critical load levels (~8.5 kN). Furthermore, when the cyclic loading level (5.0 kN) is less than a critical load levels (7.5 kN) that is required to induce surface cone cracks, significant plastic damage is observed in the subsurface zone underneath the contact area. These suggest that the cyclic contact loading induce both plastic damage and tetragonalto-monoclinic phase transformation in the 3-YSZ, leading to significant degradation in long-term strength. The implications of the results are discussed for the design of zirconia femoral heads in total hip replacements and zirconia crowns in dental restoration.


Zirconia Hertzian Contact Monotonic Loading Dental Restoration Plastic Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. O. SOBOYEJO, C. MERCER, S. A. ALLAMEH, B. NEMETSKI, N. MARCANTONIO and J. L. RICCI, Key Eng. Mater. 198–199 (2001) 203.Google Scholar
  2. 2.
    R. R. SEGHI and J. A. SORENSEN, Int. J. Prosthodontics 8 (1995) 239.Google Scholar
  3. 3.
    I. M. PETERSON, A. PAJARES, B. R. LAWN, V. P. THOMPSON and E. D. REKOW, J. Dent. Res. 77 (1998) 589.CrossRefGoogle Scholar
  4. 4.
    D. K. KIM, Y. G. JUNG, I. M. PETERSON and B. R. LAWN, Acta Mater. 47 (1999) 4711.CrossRefGoogle Scholar
  5. 5.
    R. J. KELLY, Annual Rev. Mater. Sci. 27 (1997) 443.CrossRefGoogle Scholar
  6. 6.
    R. R. SEGHI, I. DENRYand S. F. ROSENSTIEL, J. Prosth. Dent. 74 (1995) 145.CrossRefGoogle Scholar
  7. 7.
    L. HENCH and J. W. WILSON, “An Introduction to Bioceramics,” (World Scientific, Singapore, 1993).Google Scholar
  8. 8.
    P. CHRISTEL, A. MEUNIER, J. M. DORLOT, J. WITVOLET, L. SEDEL and P. BORITIN, Annal. N. Y. Acad. Sci. 523 (1988) 234.CrossRefGoogle Scholar
  9. 9.
    L. PRUITT, J. KOO, C. M. RIMNAC, S. SURESH and J. M. WRIGHT, J. Bone Joint Sur. 13 (1995) 143.Google Scholar
  10. 10.
    F. BURNY, D. MUSTER, M. DONKERWOKKE and Magerat-Burny, MRS Bulletin 25 (2000) 15.Google Scholar
  11. 11.
    B. RATNER, A. S. HOFFMAN, F. J. SCHOEN and J. E. LEMONS, “Biomaterials Science: An Introduction to Materials in Medicine,” (Academic Press, New York, NY, 1996).Google Scholar
  12. 12.
    C. M. RIMNAC, T. M. WRIGHT, D. L. BARTEL and A. H. BURSTEIN, Failure Analysis of a Total Hip Femoral Component. In Case Histories involving Fatigue and Fracture Mechanics, ASTM STP 918, American Society for Testing and Materials,West Conshohocken, PA, (1986), p. 377.Google Scholar
  13. 13.
    L. PRUITT, J. KOO, C. M. RIMNAC, S. SURESH and J. M. WRIGHT, J. Bone Joint Sur. 13 (1995) 143.Google Scholar
  14. 14.
    K. A. MALAMENT and SOCRANSKY, J. Pros. Dentist. 81 (1999) 23.Google Scholar
  15. 15.
    W. O. SOBOYEJO, “Mechanical Properties of Engineered Materials,” (Marcel Dekker, New York, 2003).Google Scholar
  16. 16.
    Food and Drug Administration. “Recall of Zirconia Ceramic Femoral Heads for Hip Implants,” (September 13, 2001).Google Scholar
  17. 17.
    Associated Press. “Artificial Hips Are Being Recalled,” (Washington Post September 14, 2001).Google Scholar
  18. 18.
    K. L. JOHNSON, “Contact Mechanics,” (Cambridge University Press, London, UK, 1985).Google Scholar
  19. 19.
    SATAPORN, WUTTIPHAN, “Contact Damage and Fracture of Ceramic Layer Structures,” (1997).Google Scholar
  20. 20.
    J. LUO and R. STEVENS, Porosity-Dependence of Elastic Moduli and Hardness of 3Y-TZP Ceramics, Ceramics International 25 (1999) 281.Google Scholar
  21. 21.
    S. TIMOSHENKO and S. WOINOWSKY-KRIEGER, “Theory of Plates and Shells,” (McGrawHill Book Company, NewYork, NY, 1959).Google Scholar
  22. 22.
    A. G. EVANSand R. M. CANON, Acta Metallurgica 34 (1986) 761.CrossRefGoogle Scholar
  23. 23.
    W. O. SOBOYEJO, D. BROOKS, L. C. CHEN and R. J. LEDERICH, J. Amer. Cer. Soc. 78 (1995) 1481.CrossRefGoogle Scholar
  24. 24.
    D. B. MARSHALL, M. C. SHAW, R. H. DAUSKARDT, R. O. RITCHIE, M. J. READEY and A. H. HEUER, J. Amer. Cer. Soc. 78 (1990) 2659.CrossRefGoogle Scholar
  25. 25.
    A. H. HEUR, N. CLAUSSEN, W. M. KRIVEN and M. RUHLE, J. Amer. Cer. Soc. 85 (1982) 642.CrossRefGoogle Scholar
  26. 26.
    F. F. LANGE, J. Mater. Sci. 17 (1982) 225.CrossRefGoogle Scholar
  27. 27.
    M. LI, H. SCHAFFER and W. O. SOBOYEJO, J. Mater. Sci. 35 (2000) 1339.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • J. Zhou
    • 1
    Email author
  • J. Mah
    • 1
  • P. Shrotriya
    • 2
  • C. Mercer
    • 3
  • W. O. Soboyejo
    • 1
  1. 1.Princeton Institute for Science and Technology of Materials, and Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrinceton
  2. 2.Department of Mechanical EngineeringIowa State UniversityAmes
  3. 3.Materials DepartmentUniversity of CaliforniaSanta Barbara

Personalised recommendations