Advertisement

Bioinspired design of dental multilayers

  • M. Huang
  • R. Wang
  • V. Thompson
  • D. Rekow
  • W. O. SoboyejoEmail author
Article

Abstract

This paper considers the use of bioinspired functionally graded structures in the design of dental multi-layers that are more resistant to sub-surface crack nucleation. Unlike existing dental crown restorations that give rise to high stress concentration, the functionally graded layers (between crown materials and the joins that attach them to dentin) are shown to promote significant reductions in stress and improvements in the critical crack size. Special inspiration is drawn from the low stress concentrations associated with the graded distributions in the dentin-enamel-junction (DEJ). The implications of such functionally graded structures are also discussed for the design of dental restorations.

Keywords

Functionally Grade Material Maximum Principal Stress Natural Tooth Dental Restoration Critical Crack Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. MALAMENT and S. S. SOCRANSKY, Survival of Dicor glass-ceramic dental restorations over 14 years: Part 1. Survival of Dicor complete coverage restorations and effect of internal surface acid etching, tooth position, gender and age. J. Prosthet. Dent. 81 (1999) 23–32.CrossRefGoogle Scholar
  2. 2.
    J. R. KELLY, Ceramics in restorative and prosthetic dentistry. Ann. Rev. in Mater. Scie. 27 (1997) 443–468.CrossRefGoogle Scholar
  3. 3.
    B. R. LAWN, Y. DENG, I. K. LLOYD, M. N. JANAL, E. D. REKOW and V. P. THOMPSON, Material design of ceramic-based layer structures for crown. J. Dent. Res. 81 (2002) 433–438.Google Scholar
  4. 4.
    W. O. SOBOYEJO, R. WANG, N. KATSUBE, R. SEGHI, C. PAGEDAS, P. SKRABA, D. R. MUMM and A. G. EVANS, Contact damage of model dental multilayers: Experiments and finite element simulations. Key Eng. Mater. 198–199 (2001) 135–178.Google Scholar
  5. 5.
    Y. DENG, B. R. LAWN and I. K. LLOYD, Damage characterization of brittle materials in ceramic-based crown-like layer structures. Key Eng. Mater. 224–226 (2002) 453–458.CrossRefGoogle Scholar
  6. 6.
    E. D. REKOW and V. P. THOMPSON, Clinical performance—a reflection of damage accumulation in ceramic dental crowns. Key Eng. Mater. 198–199 (2001) 115–134.Google Scholar
  7. 7.
    W. J. O’BRIEN, “Dental Materials and Their Selection,” 2nd edition. (Quintessence Publishing Co.: Chicago 1997).Google Scholar
  8. 8.
    H. FONG, M. SARIKAYA, S. N. WHITE and M. L. SNEAD, Nano-mechanical properties profiles across dentin-enamel junction of human incisor teeth. Mater. Sci. Eng. C 7 (2000) 119–128.Google Scholar
  9. 9.
    G. W. MARSHALL Jr., M. BALOOCH, R. R. GALLAGHER, S. A. GANSKY and S. J. MARSHALL, Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomed. Mater. Res. 54 (2001) 87–95.CrossRefGoogle Scholar
  10. 10.
    R. Z. WANG and S. WEINER, Strain-structure relations in human teeth using Moiré fringes. J. Biomech. 31 (1998) 135–141.CrossRefGoogle Scholar
  11. 11.
    N. MEREDITH, M. SHERRIFF, D. J. SETCHELL and S. A. V. SWANSON, Measurement of the microhardness of Young”s modulus of human enamel and dentin using an indentation technique. Arch. Oral. Boil. 41 (1996) 53–545.Google Scholar
  12. 12.
    J. H. KINNEY, M. BALOOCH, S. J. MARSHALL, G. W. MARSHALL and T. P. WEIHS, Hardness and Young’s modulus of human peritubular and intertubular dentin. Arch. Oral. Biol. 41 (1996) 9–13.CrossRefGoogle Scholar
  13. 13.
    L. E. TAM, E. PULVER, D. MCCOMB and D. C. SMITH, Physical properties of proprietary light-cured lining materials. Oper. Dent. 16 (1991) 210–217.Google Scholar
  14. 14.
    J.-H. KIM and G. H. PAULINO, An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models. International J. Numer. Meth. Engi. 58 (2003) 1457–1497.CrossRefGoogle Scholar
  15. 15.
    M. C. WALTERS, G. H. PAULINO, and R. H. DODDS Jr., Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading. Inte. J. Sol. Struct. 41 (2004) 1081–1118.CrossRefGoogle Scholar
  16. 16.
    Y. MURAKAMI (editor-in-Chief), “Stress Intensity Factors Handbook,” vol. 1 (Pergamon, Oxford 1987).Google Scholar
  17. 17.
    G. H. PAULINO, Z. H. JIN and R. H. DODDS, Failure of functionally graded materials. In “Comprehensive Structural Integrity,” (Elsevier Science, 2003) pp. 607–644. Google Scholar
  18. 18.
    J.-H. KIM and G. H. PAULINO, An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models. Inte. J. Numer. Meth. Eng., 58 (2003) 1457–1497.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • M. Huang
    • 1
  • R. Wang
    • 2
  • V. Thompson
    • 3
  • D. Rekow
    • 3
  • W. O. Soboyejo
    • 1
    Email author
  1. 1.The Princeton Materials Institute and The Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  2. 2.Department of Metals and Materials EngineeringUniversity of British ColumbiaBCCanada
  3. 3.College of DentistryNew York UniversityNew YorkUSA

Personalised recommendations