Engineering long term clinical success of advanced ceramic prostheses

  • Dianne RekowEmail author
  • Van P. Thompson


Biocompatability and, in some applications, esthetics make all-ceramic prostheses compelling choices but despite significant improvements in materials properties and toughening mechanisms, these still have significant failure rates. Factors that contribute to the degradation in strength and survival include material selection and prosthesis design which set the upper limit for performance. However, fabrication operations introduce damage that can be exacerbated by environmental conditions and clinical function. Using all-ceramic dental crowns as an example, experimentally derived models provide insight into the relationships between materials properties and initial critical loads to failure. Analysis of fabrication operations suggests strategies to minimize damage. Environmental conditions can create viscoplastic flow of supporting components which can contribute additional stress within the prosthesis. Fatigue is a particularly challenging problem, not only providing the energy to propagate existing damage but, when combined with the wet environment, can create new damage modes. While much is known, the influence of these new damage modes has not been completely elucidated. The role of complex prosthesis geometry and its interaction with other factors on damage initiation and propagation has yet to be well characterized.


Fatigue Critical Load Radial Crack Damage Mode Damage Initiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    NIH Consensus Statement on Total Knee ReplacementDecember 8–10, 200386-A(6) (2004) 1328.Google Scholar
  2. 2.
    Dental Market Overview ( Market/default.htm). Nobel Biocare, 2004.Google Scholar
  3. 3.
    Biomaterials Properties Database ( University of Michigan, 2004.Google Scholar
  4. 4.
    M. ALBAKRY, M. GUAZZATO and M. V. SWAIN, J. Dent. 32(2) (2004) 91.CrossRefGoogle Scholar
  5. 5.
    T. G. BIFANO, T. A. DOW and R. O. SCATTERGOOD, ASME J. Eng. Ind. 113 (1991) 184.CrossRefGoogle Scholar
  6. 6.
    K. L. BLAEDEL, J. S. TAYLOR and C. J. EVANS, Ductile-Regime Grinding of Brittle Materials In Machining of Ceramics and Composites, edited by, S. Jahnmir, M. Ramulu and P. Koshy, (Marcel Dekker, New York, 1999) p. 139.Google Scholar
  7. 7.
    M. BLIXT, E. ADAMCZAK, L. A. LINDEN, A. ODEN and K. ARVIDSON, Int. J. Pros. 13 (2000) 131.Google Scholar
  8. 8.
    F. J. BURKE, G. J. FLEMING, D. NATHANSON and P. M. MARQUIS, J. Adhes. Dent. 4(1) (2002) 7.Google Scholar
  9. 9.
    Y. CAO, Stress and Crack Analyses of Ceramic Crowns in Contact and Characterization of Material Removal in Machining of Dental Ceramics (PhD). College Park, MD, University of Maryland, 2000.Google Scholar
  10. 10.
    H. CHAI, B. R. LAWN and S. WUTTIPHAN, J. Mat. Res. 14 (1999) 3805.Google Scholar
  11. 11.
    H. CHAI and L. BR, Acta Materialia 50 (2002) 2613.CrossRefGoogle Scholar
  12. 12.
    J. R. DAVIS, “Handbook of Materials for Medical Devices Materials Park,” ASM International (Ohio 2003).Google Scholar
  13. 13.
    R. DELONG and W. H. DOUGLAS, J. Dent. Res. 62(1) (1983) 32.Google Scholar
  14. 14.
    R. DELONG and W. H. DOUGLAS, IEEE Trans. Biomed. Eng. 38(4) (1991) 339.CrossRefGoogle Scholar
  15. 15.
    Y. DENG, B. LAWN and I. LLOYD, J. Biomed. Mater. Res. 63 (2002) 137.CrossRefGoogle Scholar
  16. 16.
    Y. DENG, B. LAWN and I. LLOYD, Key Eng. Mater. 224–226 (2002) 453.Google Scholar
  17. 17.
    Y. DENG, B. R. LAWN and I. K. LLOYD, J. Biomed. Mater. Res. 63(2) (2002) 137.CrossRefGoogle Scholar
  18. 18.
    Y. DENG, Failure Modes and Materials Design for Biomechanical Layer Structures (PhD). College Park, MD, University of Maryland College Park, 2003.Google Scholar
  19. 19.
    A. A. EL HEJAZI and D. C. WATTS, Dent. Mater. 15(2) (1999) 138.CrossRefGoogle Scholar
  20. 20.
    J. L. FERRACANE, H. MATSUMOTO and T. OKABE, J. Dent. Res. 64(11) (1985) 1332.Google Scholar
  21. 21.
    L. A. FLANDERS, J. B. QUINN, O. C. WILSON, JR. and I. K. LLOYD, Dent. Mater. 19(8) (2003) 716.CrossRefGoogle Scholar
  22. 22.
    C. H. GIBBS, K. J. ANUSAVICE, H. M. YOUNG, J. S. JONES and J. F. ESQUIVEL-UPSHAW, J. Prosthet. Dent. 88(5) (2002) 498.CrossRefGoogle Scholar
  23. 23.
    M. GUAZZATO, M. ALBAKRY, L. QUACH and M. V. SWAIN, Biomat. 25(11) (2004) 2153.CrossRefGoogle Scholar
  24. 24.
    M. GUAZZATO, M. ALBAKRY, S. P. RINGER and M. V. SWAIN, Dent. Mater. 20(5) (2004) 441.CrossRefGoogle Scholar
  25. 25.
    K. HARAGUCHI, N. SUGANO, T. NISHII, H. MIKI, K. OKA and H. YOSHIKAWA, J. Bone. Joint. Surg. Br. 83(7) (2001) 996.CrossRefGoogle Scholar
  26. 26.
    H. HAYASAKI, A. OKAMOTO, Y. IWASE, Y. YAMASAKI and M. NAKATA, Int. J. Pros. 17(1) (2004) 72.Google Scholar
  27. 27.
    S. HIRANO and T. HIRASAWA, Dent. Mater. J. 13(2) (1994) 214.Google Scholar
  28. 28.
    M. HUANG, X. NIU, P. SHROTRIA, V. THOMPSON, D. REKOW and W. O. SOBOYEJO, J Eng. Mater. and Technol., Am. Soc. Mech. Eng. submitted fall (2004).Google Scholar
  29. 29.
    M. HUANG, V. P. THOMPSON, E. D. REKOW and W. O. SOBOYEJO, J. Biomed. Mat. Res. submitted (2004).Google Scholar
  30. 30.
    J. R. KELLY, J. Prosthet. Dent. 81(6) (1999) 652.CrossRefGoogle Scholar
  31. 31.
    M. KERN and V. P. THOMPSON, J. Prosthet. Dent. 73 (1995) 240.CrossRefGoogle Scholar
  32. 32.
    M. KERN and S. M. WEGNER, Dent. Mater. 14 (1998) 64.CrossRefGoogle Scholar
  33. 33.
    H.-W. KIM, Y. DENG, P. MIRANDA, A. PAJARES, D.-K. KIM, H.-E. KIM and B. LAWN, J. Am. Ceram. Soc. 84(10) (2001) 2377.CrossRefGoogle Scholar
  34. 34.
    J.-H. KIM, P. MIRANDA, D.-K. KIM and B. LAWN, J. Mater. Res. 18(1) (2003) 222.Google Scholar
  35. 35.
    B. LAWN, Y. DENG and V. THOMPSON, J. Prosthet. Dent. 86 (2001) 495.CrossRefGoogle Scholar
  36. 36.
    B. LAWN, Y. DENG, P. MIRANDA, A. PARARES, H. CHAI and D.-K. KIM, J. Mater. Res. 17(12) (2002) 3019.Google Scholar
  37. 37.
    B. LAWN, A. PAJARES, Y. ZHANG, Y. DENG, M. POLACK, I. LLOYD, E. REKOW and V. THOMPSON, Biomater. 25 (2004) 2885.CrossRefGoogle Scholar
  38. 38.
    B. R. LAWN, J. Am. Ceram. Soc. 81 (1998) 1977.CrossRefGoogle Scholar
  39. 39.
    B. R. LAWN, K. S. LEE, H. CHAI, A. PAJARES, D. K. KIM, S. WUTTIPHAN, I. M. PETERSON and X. HU, Advanced Eng. Mater. 2 (2000) 745.CrossRefGoogle Scholar
  40. 40.
    B. R. LAWN, Y. DENG and V. P. THOMPSON, J. Prosthet. Dent. 86(5) (2001) 495.CrossRefGoogle Scholar
  41. 41.
    B. R. LAWN, Y. DENG, I. K. LLOYD, M. N. JANAL, E. D. REKOW and V. P. THOMPSON, J. Dent. Res. 81(6) (2002) 433.Google Scholar
  42. 42.
    R. G. LUTHARDT, M. S. HOLZHUTER, H. RUDOLPH, V. HEROLD and M. H. WALTER, Dental. Mater. 20(7) (2004) 655.CrossRefGoogle Scholar
  43. 43.
    K. A. MALAMENT and S. S. SOCRANSKY, J. Prosthet. Dent. 86(5) (2001) 511.CrossRefGoogle Scholar
  44. 44.
    K. A. MALAMENT, S. S. SOCRANSKY, V. THOMPSON and D. REKOW, Pract. Proced. Aesthet. Dent. Suppl (2003) 5.Google Scholar
  45. 45.
    P. MIRANDA, A. PAJARES, F. GUIBERTEAU, F. CUMBRERA and B. LAWN, Acta Materialia 49 (2001) 3719.CrossRefGoogle Scholar
  46. 46.
    I. M. PETERSON, A. PAJARES, B. R. LAWN, V. P. THOMPSON and E. D. REKOW, J. Dent. Res. 77(4) (1998) 589.Google Scholar
  47. 47.
    T. QASIM, M. B. BUSH, X. HU and B. R. LAWN, J. Biomed. Mat. Res. B: Appl. Biomat. submitted (2004).Google Scholar
  48. 48.
    L. QI, Machining of Dental Ceramics with Applications on CAD/CAM dental Restorations (PhD). College Park, MD, University of Maryland, 2000.Google Scholar
  49. 49.
    E. D. REKOW and V. P. THOMPSON, Clinical Performance - A Reflection of Damage Accumulation in Ceramic Dental Crowns. In Functional Biomaterials, edited by, N. Katsube, Wo Soboyejo and M. Sacks. (Trans-Tech Publications, Zurich, Switzerland 2001) p. 115.Google Scholar
  50. 50.
    Y.-W. RHEE, H.-W. KIM, Y. DENG and B. LAWN, J. Am. Ceram .Soc. 84(5) (2001) 1066.Google Scholar
  51. 51.
    G. SAYGILI and S. SAHMALI, J. Oral. Rehab. 30 (2003) 758.CrossRefGoogle Scholar
  52. 52.
    S. SNIDER, HIP Implants Being Recalled: Potential Fracture Problem ( html, last referenced October 5, 2004). US Food and Drug Administration, 2001.Google Scholar
  53. 53.
    J. VAIDYANATHAN and T. K. VAIDYANATHAN, J. Dent. 29(8) (2001) 545.CrossRefGoogle Scholar
  54. 54.
    H. H. XU, J. R. KELLY, S. JAHANMIR, V. P. THOMPSON and E. D. REKOW, J. Dent. Res. 76(10) (1997) 1698.CrossRefGoogle Scholar
  55. 55.
    L. YIN and H. HUANG, Mach. Sci. Technol. 8(1) (2004) 21.CrossRefGoogle Scholar
  56. 56.
    Y. ZHANG, B. R. LAWN, E. D. REKOW and V. P. THOMPSON, J. Biomed. Mater. Res. (2004).Google Scholar
  57. 57.
    Y. ZHANG, A. PAJARES and B. R. LAWN, J. Biomed. Mater. Res. 71B(1) (2004) 166.CrossRefGoogle Scholar
  58. 58.
    Y. ZHANG and B. R. LAWN, J. Biomed. Mater. Res.: Appl. Biomater. in press (2004).Google Scholar
  59. 59.
    Y. ZHANG and S. J.-K. B. LAWN, J. Biomed. Mater. Res. B: Appl. Biomater. submitted (2004).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Director of Translational ResearchNYU College of DentistryNew York
  2. 2.Chair, Department of Biomaterials and BiomimeticsNYU College of DentistryNew York

Personalised recommendations