Advertisement

Membrane thickness design of implantable bio-MEMS sensors for the in-situ monitoring of blood flow

  • C. A. Steeves
  • Y. L. Young
  • Z. Liu
  • A. Bapat
  • K. Bhalerao
  • A. B. O. Soboyejo
  • W. O. Soboyejo
Article

Abstract

This paper presents some ideas for the membrane thickness design of of implantable bio-micro-electro-mechanical systems (bio-MEMS) for the in situ monitoring of blood flow. The objective is to develop a smart wireless sensing unit for non-invasive early stenosis detection in heart bypass grafts. The design includes considerations of nonlinear material models, multiscale blood flows, and appropriate analyical models for data interpretation, as well as preliminary studies of the pressure and flow sensing concepts. The paper also examines the use of surface coatings for the design on biocompatibility and non-adhesion of blood platelets and constituents. The implications of the results are discussed for in vivo deployment of such sensor systems.

Keywords

Pressure Drop Atherosclerotic Plaque Arterial Wall Internal Pressure Pressure Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. MATSUDA, Artif. Org. 28(1) (2004) 64.CrossRefGoogle Scholar
  2. 2.
    Texas Heart Institute, Coronary bypass surgery (July 2004).Google Scholar
  3. 3.
    D. F. YOUNG, J. Biomech. Eng. 101 (1979) 157.Google Scholar
  4. 4.
    A. G. MAY, J. A. DEWEESE and C. G. ROB, Surgery 53 (1963) 513.Google Scholar
  5. 5.
    D. YOUNG, N. R CHOLVIN and A. C. ROTH, Circ. Res. 36 (1975) 735.Google Scholar
  6. 6.
    B. E. MORGAN, Flow through a model of an arterial stenosis, Master’s thesis, (Iowa State University, 1971).Google Scholar
  7. 7.
    D. F. YOUNG and F. Y. TSAI, J. Biomech. 6 (1973) 395.CrossRefGoogle Scholar
  8. 8.
    D. F. YOUNG and F. Y. TSAI, J. Biomech. 6 (1973) 547.CrossRefGoogle Scholar
  9. 9.
    M. D. DESHPANDE, D. P. GIDDENS and R. F. MANBON, J. Biomech. 9 (1976) 165.CrossRefGoogle Scholar
  10. 10.
    J. C. MISRA and S. CHAKRAVARTY, J. Biomech. 19(1986) 907.CrossRefGoogle Scholar
  11. 11.
    C. TU, M. DEVILLE and L. VANDERSCHUREN, J. Biomech. 25 (1992) 1141.CrossRefGoogle Scholar
  12. 12.
    J. C. MISRA, M. K. PATRA and S. C. MISRA, J. Biomech. 26 (1993) 1129. CrossRefGoogle Scholar
  13. 13.
    A.S. DVINSKY and M. OJHA, Med. Biol. Eng. Comput. 32 (1994) 138. CrossRefGoogle Scholar
  14. 14.
    C. TU and M. DEVILLE, J. Biomech. 29 (1996) 899. CrossRefGoogle Scholar
  15. 15.
    F. GHALICHI, X. DENG, A. DE CHAMPLAIN, Y. DOUVILLE, M. KING and R. GUIDOIN, Biorheology 35 (1998) 281.CrossRefGoogle Scholar
  16. 16.
    D. BLUESTEIN, C. GUTIERREZ, M. LONDONO and R. T. SCHOEPHOERSTER, Ann. Biomed. Eng. 27 (1999) 763.CrossRefGoogle Scholar
  17. 17.
    A. TURA and S. CAVALCANTI, Comput. Biol. Med. 31 (2001) 113.CrossRefGoogle Scholar
  18. 18.
    F. MALLINGER and D. DRIKAKIS, Biorheology 39 (2002) 437.Google Scholar
  19. 19.
    S. S. VARGHESE and S. H. FRANKEL, J. Biomech. Eng. 125 (2003) 445.CrossRefGoogle Scholar
  20. 20.
    L. GUOTAO, W. XIANJU, A. BAOQUAN and L. LIANGGANG, Chinese J. Phys. 42 (2004) 401.Google Scholar
  21. 21.
    D. TANG, J. YANG, C. YANG and D. N. KU, J. Biomech. Eng. 121 (1999) 494.Google Scholar
  22. 22.
    M. S. MOAYERI and G. R. ZENDEHBUDI, J. Biomech. 36 (2003) 525.CrossRefGoogle Scholar
  23. 23.
    F. N. UNDERWOOD, A numerical study of the steady, axisymmetric flow through a disk-type prosthetic heart valve. Phd thesis, (University of Notre Dame, 1975).Google Scholar
  24. 24.
    F. N. UNDERWOOD and T. J. MUELLER, J. Biomech. Eng. (1977) 91.Google Scholar
  25. 25.
    F. N. UNDERWOOD and T. J. MUELLER, J. Biomech. Eng. 101 (1979) 198.Google Scholar
  26. 26.
    Y. C. FUNG, “Biomechanics: Mechanical Properties of Living Tissues” 2nd edn. (Springer-Verlag, New York, 1993).Google Scholar
  27. 27.
    C. S. ROY, J. Physiol. 3 (1880) 125.Google Scholar
  28. 28.
    D. H. BERGEL, J. Physiol. 156 (1961) 445.Google Scholar
  29. 29.
    D. J. PATEL, J. S. JANICKI and T. E. CAREW, Circulation Research 25 (1969) 765.Google Scholar
  30. 30.
    W. D. CASTLE and B. S. GOW, Atherosclerosis 47 (1983) 251.CrossRefGoogle Scholar
  31. 31.
    B. S. GOW, W. D. CASTLE and M. J. LEGG, J. Biomech. 16(6) (1983) 451.CrossRefGoogle Scholar
  32. 32.
    T. MATSUMOTO, H. ABE, T. OHASHI, Y. KATO and M. SATO, Physiol. Meas. 23 (2002) 635.CrossRefGoogle Scholar
  33. 33.
    H. M. LOREE, A. J. GRODZINSKY, S. Y. PARK, L. J. GIBSON and R. T. LEE, J. Biomech. 27(2) (1993) 195.CrossRefGoogle Scholar
  34. 34.
    K. HAYASHI and Y. IMAI, J. Biomech. 30(6) (1997) 573.CrossRefGoogle Scholar
  35. 35.
    N. V. SALUNKE and L. D. T. TOPOLESKI, Crit. Rev. Biomech. Eng. 25(3) (1997) 243.Google Scholar
  36. 36.
    R. T. LEE, A. J. GRODZINSKY, E. H. FRANK, R. D. KAMM and F. J. SCHOEN, Circulation 83 (1991) 1764.Google Scholar
  37. 37.
    K. HAYASHI, J. Biomech. Eng. 115 (1993) 481.Google Scholar
  38. 38.
    R. T. LEE, S. G. RICHARDSON, H. M. LOREE, A. J. GRODZINSKY, S. A. GHARIB, F. J. SCHOEN and N. PANDIAN, Arteriosclerosis Thromb. 12 (1992) 1.Google Scholar
  39. 39.
    L. D. T. TOPOLESKI and N. V. SALUNKE, ZeitschriftfurKardiologie 89 (2000) (Suppl. 2):II/85–II/91.Google Scholar
  40. 40.
    Y. C. FUNG, “Biodynamics: Circulation,” (Springer-Verlag, New York, 1984).Google Scholar
  41. 41.
    G. T. A. KOVACS, “Micromachined Transducers Handbook” (McGraw Hill, New York, 1998).Google Scholar
  42. 42.
    M. MADOU. “Fundamentals of Microfabrication” 2nd edn. (CRC Press, Boca Raton, FL, 2002).Google Scholar
  43. 43.
    K. BHALERAO, S. M. WENIFUMBO, A. B. O. SOBOYEJO and W. O. SOBOYEJO, Nanotechnology 6 (2004) 23.Google Scholar
  44. 44.
    S. TIMOSHENKO, “Theory of Plates and Shells” (McGraw Hill, New York, 1959).Google Scholar
  45. 45.
    W. N. SHARPE, S. BROWN, G. C. JOHNSON and W. KNAUSS, Round-robin tests of modulus and strength of polysilicon. In Proc. Microelectromechanical Structures for Materials Research (San Francisco, CA, 1998) p. 57.Google Scholar
  46. 46.
    B. D. RATNER, A. S. HOFFMAN, F. J. SCHOEN and J. E. LEMMONS, “Biomaterials Science: An Introduction to Materials Science in Medicine” 2nd edn. (Academic Press, San Diego, CA, 2004).Google Scholar
  47. 47.
    J. A. CONNALLY and S. B. BROWN, Science 256 (1992) 1537.CrossRefGoogle Scholar
  48. 48.
    W. V. ARSDELL and S. BROWN, J. Microelectromech. Syst. 8 (1999) 319.CrossRefGoogle Scholar
  49. 49.
    H. KAHN, R. BALLARINI, J. J. BELLANTE and A. H. HEUER, Science 298 (2002) 1215.Google Scholar
  50. 50.
    C. L. MUHLSTEIN, S. B. BROWN and R. O. RITCHIE, J. Microelectromech. Syst. 10 (2001) 593.CrossRefGoogle Scholar
  51. 51.
    S. A. ALLAMEH, P. SHROTRIYA, A. BUTTERWICK, S. B. BROWN and W. O. SOBOYEJO, J. Microelectromech. Syst. 12 (2003) 313.CrossRefGoogle Scholar
  52. 52.
    P. SHROTRIYA, S. ALLAMEH, S. B. BROWN, Z. SUO and W. O. SOBOYEJO, Exper. Mech. 43 (2003) 289.CrossRefGoogle Scholar
  53. 53.
    D. M. BRUNETTE, P. TENGVALL, M. TEXTOR and P. THOMPSEN, “Titanium in Medicine: Materials Science, Surface Science, Engineering, Biological Responses and Medical Applications” (Springer, New York, 2001).Google Scholar
  54. 54.
    C. MILBURN, E. RUNG, G. M. OPARINDE, J. CHEN, A. C. BEYE, J. SCHWARTZ and W. O. SOBOYEJO, submitted to J. Mater. Sci. Mater. Med. (2004).Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • C. A. Steeves
    • 1
  • Y. L. Young
    • 2
  • Z. Liu
    • 2
  • A. Bapat
    • 3
  • K. Bhalerao
    • 4
  • A. B. O. Soboyejo
    • 4
  • W. O. Soboyejo
    • 5
  1. 1.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrinceton
  2. 2.Department of Civil and Environmental EngineeringPrinceton UniversityPrinceton
  3. 3.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  4. 4.Department of Food, Agricultural and Biological EngineeringOhio State UniversityColumbus
  5. 5.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrinceton

Personalised recommendations