Advertisement

A folic acid-based functionalized surface for biosensor systems

  • Kaustubh D. BhaleraoEmail author
  • Stephen C. Lee
  • Winston O. Soboyejo
  • Alfred B. O. Soboyejo
Article

Abstract

The performance of a biosensor depends largely on its interface with the biological system. This interface imparts a biologically relevant function to the device and provides a measure of specificity towards the biological analyte of interest. This paper documents the choice of folic acid as the functional component of a cantilever sensor to recognize nasopharyngeal (KB) cancer cells. A conjugation chemistry protocol has been outlined to deploy folic acid onto a titanium-coated sensor surface using a silane linker. The presence and biological activity of the sensor was verified by means of an immmunospecific (ELISA) procedure. The overall performance of the folic acid-based cantilever sensor was measured using cancerous KB cell-binding experiments.

Keywords

Folic Acid Titanium Surface Folate Receptor Micro Electro Mechanical System Reduce Folate Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. D. BHALERAO, S. MWENIFUMBO, A. B. O. SOBOYEJO and W. O. SOBOYEJO Biomed. Microdevi. 6(1) (2004) 23.CrossRefGoogle Scholar
  2. 2.
    L. A. CULP and C. N. SUKENIK J. Biomater. Sci. Polymers Ed. 91(11) (1998) 1161.Google Scholar
  3. 3.
    E. DAUTY, J.-S. REMY, G. ZUBER and J.-P. BEHR Bioconj. Chem. 13 (2002) 831.CrossRefGoogle Scholar
  4. 4.
    M. A. GOSSELIN and R. L. LEE, Biotechnol. Ann. Rev. 8 (2002) 103.CrossRefGoogle Scholar
  5. 5.
    I. HABUS, J. XIE, R. P. IYER, et al., Bioconj. Chem. 91 (1998) 283.CrossRefGoogle Scholar
  6. 6.
    H. E. J. HOFLAND, C. MASSON, S. IGINLA, et al., Molec. Ther. 5(6) (2002) 739.CrossRefGoogle Scholar
  7. 7.
    J. HOLM, S. I. HANSEN, M. HOIER-MADSEN et al., Biosci. Rep. 17(4) (1997) 415.CrossRefGoogle Scholar
  8. 8.
    M. S. JHAVERI, C. WAGNER and J. B. TREPEL, Mole. Pharmacol. 60(6) (2001) 1288.Google Scholar
  9. 9.
    J. W.LEE, J. Y. LU, P. S. LOW and P. L. FUCHS Bioorganic & Medicinal Chem. 10 (2002) 239.Google Scholar
  10. 10.
    D. M. KRANZ, T. A. PATRICK, K. E. BRIGLE, et al., In Proceedings of the National Academy of Sciences of the U. S. A. 92 (1995) 9057.CrossRefGoogle Scholar
  11. 11.
    S. LI, H. M. DESHMUKH and L. HUANG Pharm. Res. 15(10) (1998) 1540.CrossRefGoogle Scholar
  12. 12.
    J. LIU, C. KOLAR, T. A. LAWSON and W. H. GMEINER, J. Org. Chem. 66 (2001) 5655.CrossRefGoogle Scholar
  13. 13.
    L. T. MANTOVANI, S. MIOTTI, S. MENARD, et al., Eur. J. Cancer. 30(A) (1994) 363.CrossRefGoogle Scholar
  14. 14.
    J. MATULIC-ADAMIC, V. SEREBRYANY, P. HAEBERLI, V. R. MOKLER and L. BIEGELMAN Bioconj. Chem. 13(5) (2002) 1071.CrossRefGoogle Scholar
  15. 15.
    K. B. MAY, J. FOX, M. E. RAZZOOG, et al., J. Prosthetic Dentistry 73(5) (1995) 428.CrossRefGoogle Scholar
  16. 16.
    R. MIZOJIRI, H. URABE and F. SATO J. Organic Chem. 65(19) (2000) 6217.CrossRefGoogle Scholar
  17. 17.
    X. Q. PAN, H. Q. WANG and R. J. LEE Anticancer Res. 22(3) (2002) 1629.Google Scholar
  18. 18.
    J. A. REDDY, D. W. CLAPP and P. S. LOW J. Controlled Release 74 (2001) 77.CrossRefGoogle Scholar
  19. 19.
    E. SADASIVAN, A. REGEC and S. P. ROTHENBERG, Gene 291(1–2) (2002) 149.CrossRefGoogle Scholar
  20. 20.
    A. SAHAFI, A. PEUTZFELDT, E. ASMUSSEN and K. GOTFREDSEN J. Adhesive Dentistry 5(2) (2003) 153.Google Scholar
  21. 21.
    J. SCHWAR3TZ and S. L. BERNASEK Catalysis Today 66 (2001) 3.CrossRefGoogle Scholar
  22. 22.
    K. V. P. M. SHAFI, A. ULMAN, X. YAN, et al., Langmuir 17 (2001) 1726.CrossRefGoogle Scholar
  23. 23.
    D. VOET and J. G. VOET, “Tetrahydrofolate Cofactors: The Metabolism of C 1 Units.” 2nd edition (John Wiley & Sons, Inc., New York., 1995).Google Scholar
  24. 24.
    S. WANG, R. J. LEE, C. J. MATHIAS, M. A. GREEN and P. S. LOW, Bioconj. Chem. 7 (1996) 56.CrossRefGoogle Scholar
  25. 25.
    S. D. WEITMAN, R. H. LARK, L. R. CONEY, et al., Cancer Res. 52(12) (1992) 3396.Google Scholar
  26. 26.
    S. J. XIAO, M. TEXTOR, N. D. SPENCER, et al., J. Mater. Sci: Mater Med. 8 (1997) 867.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Kaustubh D. Bhalerao
    • 1
    Email author
  • Stephen C. Lee
    • 2
  • Winston O. Soboyejo
    • 3
  • Alfred B. O. Soboyejo
    • 4
  1. 1.Department of Agricultural and Biological EngineeringUniversity of Illinois at Urbana-ChampaignUrbana
  2. 2.Department of Biomedical Engineering, Department of Chemical Engineering and The Davis Heart & Lung InstituteThe Ohio State UniversityColumbus
  3. 3.Department of Mechanical and Aerospace Engineering and The Princeton Materials InstitutePrinceton UniversityPrinceton
  4. 4.Department of Food, Agricultural and Biological Engineering, Department of Aerospace Engineering and The John Glenn Institute of Public Policy and Public ServiceThe Ohio State UniversityColumbus

Personalised recommendations