Journal of Materials Science: Materials in Medicine

, Volume 17, Issue 11, pp 1037–1042 | Cite as

Clinical applications of glass-ceramics in dentistry

  • Wolfram Höland
  • Volker Rheinberger
  • Elke Apel
  • Christian van ’t Hoen
  • Marlies Höland
  • Alex Dommann
  • Marcel Obrecht
  • Corinna Mauth
  • Ursula Graf-Hausner


Glass-ceramics featuring special properties can be used as a basis to develop biomaterials. It is generally differentiated between highly durable biomaterials for restorative dental applications and bioactive glass-ceramics for medical use, for example, bone replacements. In detail, this paper presents one biomaterial from each of these two groups of materials.

In respect to the restorative dental biomaterials, the authors give an overview of the most important glass-ceramics for clinical applications. Leucite, leucite-apatite, lithium disilicate and apatite containing glass-ceramics represent biomaterials for these applications. In detail, the authors report on nucleation and crystallization mechanisms and properties of leucite-apatite glass-ceramics. The mechanism of apatite nucleation is characterized by a heterogeneous process. Primary crystal phases of α - and β -NaCaPO4 were determined.

Rhenanite glass-ceramics represent biomaterials with high surface reactivity in simulated body fluid, SBF, and exhibit reactive behaviour in tests with bone cells. Cell adhesion phenomena and cell growth were observed. Suitable colonization and proliferation and differentiation of cells as a preliminary stage in the development of a material for bone regeneration applications was established. The authors conclude that the processes of heterogeneous nucleation and crystallization are important for controlling the required reactions in both biomaterial groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. L. HENCH, R. J. SPLINTER, W. C. ALLEN and T. K. GREENLEE JR., J. Biomed. Mater. Res. 2 (1971) 117.CrossRefGoogle Scholar
  2. 2.
    L. L. HENCH, J. Am. Ceram. Soc. 74(1991) 1487.CrossRefGoogle Scholar
  3. 3.
    L. L. HENCH and J. M. POLAK, Science 295(2002) 1014.CrossRefGoogle Scholar
  4. 4.
    J.M. BARRETT, D.E. CLARK and L.L. HENCH, US Pat. 4,189,325 (1980).Google Scholar
  5. 5.
    T. KOKUBO, Biomaterials 12 (1991) 155.CrossRefGoogle Scholar
  6. 6.
    J. A. JUHASZ, S. M. BEST, W. BONFIELD, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Mat. Sci. Mat. Med. 14(2003) 489.CrossRefGoogle Scholar
  7. 7.
    T. KASUGA and M. NOGAMI, Trans. Mat. Res. Soc. Japan 29 (2004) 2933.Google Scholar
  8. 8.
    J. W. McLEAN, in “Dental Materials”, edited by G. Dickson and J.M. Cassels (National Bureau of Standards, Washington, DC, 1972) p. 77.Google Scholar
  9. 9.
    W. J. O’BRIAN, in “An Outline of Dental Materials and Their Selection”, edited by W.J. O’Brian and G. Ryge (W.B. Saunders, Philadelphia, PA, 1978) p. 180.Google Scholar
  10. 10.
    D. G. GROSSMAN, in “International Symposium on Computer Restorations,” edited by W.H. Mörmann (Quintessenz, Chicago, IL, 1991) p. 103.Google Scholar
  11. 11.
    A. WOHLWEND and P. SCHÄRER, Quint. Zahntech. 16 (1990) 966.Google Scholar
  12. 12.
    F. KREJCI, F. LUTZ, M. REIMER and J. L. HEINZMANN, J. Prosthetic Dent. 69(1993) 425.CrossRefGoogle Scholar
  13. 13.
    W. HÖLAND, M. FRANK and V. RHEINBERGER, J. Non-Cryst. Sol. 180 (1995) 292.CrossRefGoogle Scholar
  14. 14.
    W. HÖLAND and G. H. BEALL, Glass-Ceramic Technology (The Am. Ceram. Soc., Westerville, 2002).Google Scholar
  15. 15.
    V. RHEINBERGER, Die Zahnarzt Woche, DZW, 37(2005) 14.Google Scholar
  16. 16.
    C. VAN ’T HOEN, W. HÖLAND and V. RHEINBERGER, Glastechn. Ber. Glass Sci. and Technol. 77C(2004) 382.Google Scholar
  17. 17.
    J. ANDO and S. MATSUNO, Bull. Chem. Soc. Japan 41(1968) 342.CrossRefGoogle Scholar
  18. 18.
    J. C. ELLIOT, “Studies in Inorganic Chemistry” Vol. 18 (Elsevier, Amsterdam, 1994) p. 64.Google Scholar
  19. 19.
    W. HÖLAND, V. RHEINBERGER and E. APEL, Glastechn. Ber. Glass Sci. and Technol. 77C(2004) 114.Google Scholar
  20. 20.
    E. APEL, W. HÖLAND and V. RHEINBERGER, Glastechn. Ber. Glass Sci. and Technol. 77C (2004) 199.Google Scholar
  21. 21.
    W. SUCHANEK, M. YASHIMA, M. KAKIHANA and M. YOSHIMURA, J. Europ. Cer. Soc. 18 (1998) 1923.CrossRefGoogle Scholar
  22. 22.
    M. M. A. RAMSELAAR, P. J. VAN MULLEN, W. KALK, F. C. M. DRIESSEN, J. R. DE WIJN and A.L.H. STOLS, J. Mater. Sci. Mater. Med. 4 (1993) 311.CrossRefGoogle Scholar
  23. 23.
    M. HÖLAND, A. DOMMANN, W. HÖLAND, E. APEL and V. RHEINBERGER, Glass Sci. Technol. 78 (2005) 153.Google Scholar
  24. 24.
    S. BUSCH, U. SCHWARZ and R. KNIEP, Chem. Mat. 13 (2001) 3260.CrossRefGoogle Scholar
  25. 25.
    S. HATTAR, A. BERDAL, A. ASSELIN, S. LOTY, D. C. GREENSPAN and J. M. SAUTIER. Eur. Cell. Mater. 31 (2002) 61.Google Scholar
  26. 26.
    T. A. OWEN, V. SHALHOUB, L. M. BARONE, L. WILMING, M. S. TASSINARI, M.B. KENNEDY, S. POCKWINSE, J.B. LIAN and G.S. STEIN., J. Cell Physiol. 143 (1990) 420.CrossRefGoogle Scholar
  27. 27.
    J. A. SORENSON and W. T. MITO, Quint. Dent. Technol. 21 (1998) 81.Google Scholar
  28. 28.
    J. A. SORENSEN, Quint. Dent. Technol. 22 (1999) 153.Google Scholar
  29. 29.
    D. EDELHOFF, H. SPIEKERMANN, A. RÜBBEN and M. YILDIRIM, Quintessenz 50(1999) 177.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Wolfram Höland
    • 1
  • Volker Rheinberger
    • 1
  • Elke Apel
    • 1
  • Christian van ’t Hoen
    • 1
  • Marlies Höland
    • 2
  • Alex Dommann
    • 2
  • Marcel Obrecht
    • 3
  • Corinna Mauth
    • 3
  • Ursula Graf-Hausner
    • 3
  1. 1.Ivoclar Vivadent AG, Principality of LiechtensteinSchaan
  2. 2.University of Applied Sciences and TechnologyBuchsSwitzerland
  3. 3.Zürcher Hochschule WinterthurWinterthurSwitzerland

Personalised recommendations