Journal of Materials Science: Materials in Medicine

, Volume 17, Issue 11, pp 1019–1023 | Cite as

Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing

  • Chris A. Owen
  • Ioan Notingher
  • Robert Hill
  • Molly StevensEmail author
  • Larry L. Hench


This review summarises progress in Raman spectroscopy and its application in diagnostics, toxicological testing and tissue engineering. Applications of Raman spectroscopy in cell biology are in the early stages of development, however, recent publications have demonstrated its utilisation as a diagnostic and development tool with the key advantage that investigations of living cells can be performed non-invasively.

Some of the research highlighted here demonstrates the ability of Raman spectroscopy to accurately characterise cancer cells and distinguish between similar cell types. Many groups have used Raman spectroscopy to study tissues, but recently increased effort has gone into single cell analysis of cell lines; the advantages being that cell lines offer ease of handling and increased reproducibility over tissue studies and primary cells. The main goals of bio-Raman spectroscopy at this stage are twofold. Firstly, the aim is to further develop the diagnostic ability of Raman spectroscopy so it can be implemented in a clinical environment, producing accurate and rapid diagnoses. Secondly, the aim is to optimise the technique as a research tool for the non-invasive real time investigation of cell/material interactions in the fields of tissue engineering and toxicology testing.


Tissue Engineering Raman Spectroscopy Linear Discriminant Analysis MG63 Cell Principal Component Analysis Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. J. PUPPELS, F. F. M. DEMUL, C. OTTO, J. GREVE, M. ROBERTNICOUD, D. J. ARNDTJOVIN and T. M. JOVIN, Nature 6290 (1990) 301.CrossRefGoogle Scholar
  2. 2.
    J. LASERNA, “An Introduction to Raman Spectroscopy: Introduction and Basic Principles” (Wiley, 2001).Google Scholar
  3. 3.
    G. J. PUPPELS, in “Biological Techniques” (Academic Press, London, 1999) pp. 377.Google Scholar
  4. 4.
    G. J. PUPPELS, J. H. F. OLMINKHOF, G. M. J. SEGERSNOLTEN, C. OTTO, F. F. M. DEMUL and J. GREVE, Exp. Cell Res. 2 (1991) 361.CrossRefGoogle Scholar
  5. 5.
    E. B. HANLON, R. MANOHARAN, T. W. KOO, K. E. SHAFER, J. T. MOTZ, M. FITZMAURICE, J. R. KRAMER, I. ITZKAN, R. R. DASARI and M. S. FELD, Phys. Med. Biol. 2 (2000) R1.CrossRefGoogle Scholar
  6. 6.
    N. UZUNBAJAKAVA, A. LENFERINK, Y. KRAAN, E. VOLOKHINA, G. VRENSEN, J. GREVE and C. OTTO, Biophys. J. 6 (2003) 3968.CrossRefGoogle Scholar
  7. 7.
    S. WOLD, K. ESBENSEN and P. GELADI, Chemometrics Intell. Lab. Syst. 1–3 (1987) 37.CrossRefGoogle Scholar
  8. 8.
    K. E. SHAFER-PELTIER, A. S. HAKA, J. T. MOTZ, M. FITZMAURICE, R. R. DASARI and M. S. FELD, J. Cell. Biochem. (2002) 125.Google Scholar
  9. 9.
    G. J. PUPPELS, J. Raman Spectrosc. 7 (2002) 496.CrossRefGoogle Scholar
  10. 10.
    M. J. PELLETIER, Appl. Spectrosc. 1 (2003) 20A.CrossRefGoogle Scholar
  11. 11.
    S. SIGURDSSON, P. A. PHILIPSEN, L. K. HANSEN, J. LARSEN, M. GNIADECKA and H. C. WULF, IEEE Trans. Biomed. Eng. 10 (2004) 1784.CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Z. W. HUANG, A. MCWILLIAMS, H. LUI, D. I. MCLEAN, S. LAM and H. S. ZENG, Int. J. Can. 6 (2003) 1047.CrossRefGoogle Scholar
  14. 14.
    S. KAMINAKA, T. ITO, H. YAMAZAKI, E. KOHDA and H. HAMAGUCHI, J. Raman Spectrosc. 7 (2002) 498.CrossRefGoogle Scholar
  15. 15.
    K. E. SHAFER-PELTIER, A. S. HAKA, M. FITZMAURICE, J. CROWE, J. MYLES, R. R. DASARI and M. S. FELD, J. Raman Spectrosc. 7 (2002) 552.CrossRefGoogle Scholar
  16. 16.
    J. KNEIPP, T. B. SCHUT, M. KLIFFEN, M. MENKE-PLUIJMERS and G. PUPPELS, Vib. Spectrosc. 1 (2003) 67.CrossRefGoogle Scholar
  17. 17.
    I. NOTINGHER, I. BISSON, A. E. BISHOP, W. L. RANDLE, J. M. P. POLAK and L. L. HENCH, Anal. Chem. 11 (2004) 3185.CrossRefGoogle Scholar
  18. 18.
    I. NOTINGHER, G. JELL, U. LOHBAUER, V. SALIH and L. HENCH, J. Cell. Biochem. (2004) 1180.Google Scholar
  19. 19.
    L. NOTINGHER, I. BISSON, J. M. POLAK and L. L. HENCH, Vib. Spectrosc. 1–2 (2004) 199.CrossRefGoogle Scholar
  20. 20.
    C. M. KRISHNA, G. D. SOCKALINGUM, G. KEGELAER, S. RUBIN, V. B. KARTHA and M. MANFAIT, Vib. Spectrosc. 1–2 (2005) 95.CrossRefGoogle Scholar
  21. 21.
    P. CROW, B. BARRASS, C. KENDALL, M. HART-PRIETO, M. WRIGHT, R. PERSAD and N. STONE, Br. J. Cancer 12 (2005) 2166.CrossRefGoogle Scholar
  22. 22.
    (E.C.), WHITE PAPER: Strategy for a Future Chemicals Policy, (COM(2001) 88 final, Brussels, 2001) p. 4Google Scholar
  23. 23.
    I. NOTINGHER, C. GREEN, C. DYER, E. PERKINS, N. HOPKINS, C. LINDSAY and L. L. HENCH, J. Royal Soc., Interface Number 1 (2004) 79.CrossRefGoogle Scholar
  24. 24.
    J. BINOY, J. P. ABRAHAM, I. H. JOE, V. S. JAYAKUMAR, G. R. PETTIT and O. F. NIELSEN, J. Raman Spectrosc. 11 (2004) 939.CrossRefGoogle Scholar
  25. 25.
    C. A. OWEN, J. SELVAKUMARAN, I. NOTINGHER, G. JELL, L. L. HENCH and M. M. STEVENS, J. Cell. Biochem. 99 (2006) 178–86.CrossRefGoogle Scholar
  26. 26.
    N. UZUNBAJAKAVA, A. LENFERINK, Y. KRAAN, B. WILLEKENS, G. VRENSEN, J. GREVE and C. OTTO, Biopolymers 1 (2003) 1.CrossRefGoogle Scholar
  27. 27.
    I. NOTINGHER, S. VERRIER, S. HAQUE, J. M. POLAK and L. L. HENCH, Biopolymers 4 (2003) 230.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Chris A. Owen
    • 1
  • Ioan Notingher
    • 1
  • Robert Hill
    • 1
  • Molly Stevens
    • 1
    Email author
  • Larry L. Hench
    • 1
  1. 1.Department of MaterialsImperial College LondonLondonUnited Kingdom

Personalised recommendations