Skip to main content
Log in

Studies on α-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A blend matrix of crosslinked starch and pectin was prepared and characterized by infra-red (IR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The prepared blends were investigated kinetically for water sorption studies and α-amylase induced degradation adopting a gravimetric procedure. Based on the experimental findings, a plausible mechanism including both diffusion and surface enhanced degradation was suggested and degradation profiles were interpreted. The influence of various factors such as chemical architecture of the blend, pH and temperature of α-amylase solution were examined for the swelling and degradation kinetics of crosslinked starch–pectin blends. The effect of concentration of enzyme solution was also studied on the degradation profile of the blends. A correlation was established between the extent of degradation and water imbibing capacity of the degrading blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. A. M. ALIM, S. P. ZHONG, P. J. DOHERTY and D. F. WILLIAMS, Biomaterials 14 (1993) 648

    Article  Google Scholar 

  2. S. J. HOLLAND, A. M. JOLLY, M. YASIN and B. J. TIGHE, Biomaterials 8 (1987) 289

    Article  CAS  Google Scholar 

  3. J. KOST and S. SHEFER, Biomaterials 11 (1990) 695

    Article  CAS  Google Scholar 

  4. G. E. Zaikov, Degradation and Stabilisation of Polymers, edited by H. H. Jellick (Elsevier: Amsterdam, 1989) p. 469

  5. D. K. Gilding, Biodegradable Polymers, edited by D. F. Williams (CRC Press: Flandes, 1981) p. 210

  6. G. SCOTT, Polym. Degrad. Stab. 48 (1995) 315

    Article  CAS  Google Scholar 

  7. N. H. SHAH, A. S. RAILKAR, F. C. CHEN, R. TANANTINO, S. KUMAR, M. MURJANI, D. PALMER, M. H. INFIELD and A. W. MALICK, J. Controlled Release 27 (1993) 139

    Article  CAS  Google Scholar 

  8. T. Nishimura, T. Tsurata, T. Hyashi, K. Kataoka, K. Ishihara and Y. Kimura, Biomedical Application of Polymeric Materials (CRC Press: Boca Raton, FL, 1993), p. 191

  9. W. D. OLIVERIRA and W. G. GLASSER, J. Appl. Polym. Sci. 61 (1996) 81

    Article  Google Scholar 

  10. M. A. LOPES CRISTINA and M. I. FELISBERTI, Biomaterials 24 (2003) 1279

    Article  CAS  Google Scholar 

  11. B. KRAJEWSKA, J. Chem. Technol. Biotechnol. 76 (2001) 636

    Article  CAS  Google Scholar 

  12. J. H. KIM, S. B. LEE, S. J. KIM and Y. M. LEE, Polym. Comm. 43(26) (2002) 7549

    CAS  Google Scholar 

  13. C. S. PEREIRA, A. M. CUNHA, R. L. REIS, B. VAZQUEZ and J. SAN ROMAN, J. Mater. Sci. Mater. Med. 9 (1998) 825

    Article  CAS  Google Scholar 

  14. R. L. REIS, A. M. CUNHA, P. S. ALLAN and M. BEVIS, Polym. Adv. Technol. 7 (1996) 784

    Article  CAS  Google Scholar 

  15. C. ELVIRA, J. F. MANO, J. SAN ROMAN and R. L. REIS, Biomaterials 23 (2002) 1955

    Article  CAS  Google Scholar 

  16. C. DESSEVAUX, P. DUBREULI and V. LENAERTS, J. Controlled Release 82 (2002) 83

    Article  Google Scholar 

  17. ZHU ZHIFENG and ZHUO RENXI, Starch-Starke 52 (2000) 58

    Article  Google Scholar 

  18. C. M. VAZ, R. L. REIS and A. M. CUNHA, Mater. Res. Innov. 4 (2001) 375

    Article  CAS  Google Scholar 

  19. M. V. MORENO-CHULIM, F. B. PEREZ and G. C. ESCAMILLA, J. Appl. Polym. Sci. 89 (2003) 2764

    Google Scholar 

  20. S. PARANDOOSH and S. M. HUDSON, J. Appl. Polym. Sci. 48 (2003) 787

    Article  Google Scholar 

  21. T. P. LAASKO and A. I. SJOHOLM, J. Pharm. Sci. 10 (1986) 962

    Google Scholar 

  22. A. ARAUJO, A. M. CUNHA and M. MOTA, Biomaterials 25 (2004) 2687–2693

    Article  Google Scholar 

  23. S. H. Chistensen, Pectinin and M. Glickman, Food Hydrocolloids, Vol. III (CRC Press: Boca Raton, FL 1985), pp. 205–232

  24. L. S. LIU, M. L. FISHMAN, J. KOST and K. B. HICKS, Biomaterials 24 (2003) 3333

    Article  CAS  Google Scholar 

  25. M. O. NEILL, P. ALBERSHEIM, and A. DARVIL, Methods Plant Biochem. 2 (1990) 415

    Google Scholar 

  26. V. BEREZA, LiK Sprava 8 (1993) 4

    Google Scholar 

  27. L. F. G. UDEMAN and N. A. PEPPAS, J. Appl. Polym. Sci. 55 (1995) 919

    Article  Google Scholar 

  28. D. K. KWEON, D. S. CHA, H. J. PARK and S. T. LIM, J. Appl. Polym. Sci. 78 (2000) 986

    Google Scholar 

  29. I. I. SHAMOLINA, A. M. BOCHEK, N. M. ZABI VALOVA, D. A. MEDVEDEVA and S. A. GRISHANOV, Fibres Textiles Eastern Europe 11 (2003) 33–40

    CAS  Google Scholar 

  30. G. B. AIMUHAMMEDOVA, J. E. ALIEVA and N. P. SHELUHINA, Frunzi Ilim 131 (1984)

  31. R. M. SILVERSTEIN, G. CLAYTON BASSLER, TERENCHE and C. MORRILL, Spectrometric Identification of Organic Compounds, 5th edn (John Wiley & Sons Inc.: NY, 1991)

    Google Scholar 

  32. J. W. PARK, S. S. IM, S. H. KIM and Y. H. KIM, Polym. Eng. Sci. 40 (2000) 2539

    Article  CAS  Google Scholar 

  33. A. A. HANNA, A. H. BASTA, H. EL-SAIED and J. F. ABADIR, Die Angewandte Makromol. Chemie 260 (1998) 1

  34. E. J. Mack, T. Okano and S. W. Kim, Hydrogels in Medicine and Pharmacy-Polymers, Vol. II, edited by N. A. Peppas (CRC Press: Boca Raton, 1988), p. 65

  35. A. B. CLAYTON, T. V. CHIRILA and P. P. DALTON, Polym. Int. 42 (1997) 45

    Article  CAS  Google Scholar 

  36. A. K. BAJPAI and A. GIRI, Carbohydrate polymers 53 (2003) 271

    Article  CAS  Google Scholar 

  37. B. RAMARAJ and G. RADHAKRISHNAN, Polymer 35(10) (1994) 2167

    Article  CAS  Google Scholar 

  38. Y. QIU and K. PARK, Adv. Drug Del. Rev. 53 (2001) 321

    Article  CAS  Google Scholar 

  39. N. A. PEPPAS and S. L. WRIGHT, Macromolecules 29 (1996) 8798

    Article  CAS  Google Scholar 

  40. W. F. LEE and C. F. CHEN, J. Appl. Polym. Sci. 69 (1998) 2021

    Article  CAS  Google Scholar 

  41. A. K. BAJPAI and M. SHRIVASTAVA, J. Macromol Sci., Pure Appl. Chem. A39(7) (2002) 667

    Article  CAS  Google Scholar 

  42. V. Leloup, Thesis, Paris VI, France (1989)

  43. E. K. ANDERBERG and C. NYSTROM, Int. J. Pharm. 62 (1990) 143

    Article  CAS  Google Scholar 

  44. A. K. BAJPAI and S. BHANU, Colloid Polym. Sci. 282 (2003) 76

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Director, Indian Institute of Technology, Mumbai, India for carrying out FTIR, SEM and DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajpai, A.K., Shrivastava, J. Studies on α-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin. J Mater Sci: Mater Med 18, 765–777 (2007). https://doi.org/10.1007/s10856-006-0003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-0003-3

Keywords

Navigation