Abstract
The influence of temperature and aging time on the morphology and mechanical properties of nano-sized hydroxyapatite (HA) synthesized by a hydrothermal method is reported here. The pre-mixed reactants were poured into a stirred autoclave and reacted at temperatures between 25–250°C for 2–10 h. HA powders thus obtained were examined using X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (FESEM) and a particle size analyzer. It was found that the aspect ratio of the particles increased with the reaction temperature. The length of the HA particles increased with the reaction temperature below 170°C, but it decreased when the temperature was raised above 170°C. The agglomerates of HA particles were formed during synthesis, and their sizes were strongly dependent on reaction temperatures. As the reaction temperature increased, the agglomerate size decreased (p = 0.008). The density of the discs pressed from these samples reached 85–90% of the theoretical density after sintering at 1200°C for 1 h. No decomposition to other calcium phosphates was detected at this sintering temperature. A correlation existed (p = 0.05) between the agglomerate sizes of HA particles synthesized at various conditions and their sintered densities. With the increase of the agglomerate size, the sintered density of the HA compact decreased. It was found that both the sintered density and flexural strength increased with increasing aging time and reaction temperature. A maximum flexural strength of 78 MPa was observed for the samples synthesized at 170°C for 5 h with the predicted average at these conditions being 65 MPa. These samples attained an average sintered density of 88%.
This is a preview of subscription content, access via your institution.
References
W. F. DEJONG, Tec. Trav. Chim. 45 (1926) 445.
M. I. KAY, R. A. YOUNG and A. S. POSNER, Nature 204 (1964) 1050.
R. Z. LEGEROS, Prog. Crystal. Growth. Charact. 4 (1981) 1.
C. REY, V. RENUGOPALAKRISHNAN and B. COLLINS, Calcif. Tissue. Int. 49 (1991) 251.
R. Z. LEGEROS, Adv. Dent. Res. 2 (1988) 164.
R. Z. LEGEROS, Clin. Orthop. Rel. Res. 395 (2002) 81.
H. AOKI in “Science and Medical Applications of Hydroxyapatite” (Takayama Press System Center Co., Inc., 1991).
W. SUCHANEK, M. YAASHIMA, M. KAKIHANA and M. YOSHIMURA, J. Am. Ceram. Soc. 80 (1997) 2805.
M. KNEPPER, B. K. MILTHORPE and S. MORICCA, J. Mater. Sci Mater. Med. 9 (1998) 589.
M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.
A. LOPEZ-MACIPE, R. RODRIGUEZ-CLEMENTE, A. HIDALGO-LOPEZ, I. ARITA, M. V. GARCIA-GARDUNO, E. RIVERA and V. M. CASTANO, J. Mater. Synth. Process. 6 (1998) 121.
H. S. LIU, T. S. CHIN, L. S. LAI, S. Y. CHIU, K. H. CHUNG, C. S. CHANG and M. T. LUI, Ceram. Int. 23 (1997) 19.
W. J. WENG and J. L. BAPTISTA, Biomaterials 19 (1998) 125.
W. J. WENG and J. L. BAPTISTA, J. Mater. Sci. Mater. Med. 9 (1998) 159.
M. SIVAKUMAR and I. MANJUBALA, Mater. Lett. 50 (2001) 199.
R. RAMACHANDRA RAO and T. S. KANNAN, Mat. Sci. Eng. C. 20 (2002) 187.
G. K. LIM, J. WANG, S. C. NG and L. M. GAN, Langmuir 15 (1999) 7472.
C. KOTHAPALLI, M. WEI, A. L. VASILIEV and M. T. SHAW, Acta. Mater. 52 (2004) 5655.
Y. FUJISHIRO, H. YABUKI, K. KAWAMURA, T. SATO and A. OKUWAKI, J. Chem. Technol. Biotechnol. 57 (1993) 349.
E. BOUYER, F. GITZHOFER and M. I. BOULOS, J. Mater. Sci. Mater. Med. 11 (2000) 523.
L. BERNARD, M. FRECHE, J. L. LACOUT and B. BISCANS, Powder Technol. 103 (1999), 19.
S. SUZUKI, M. OHGAKI and M. ICHIYANAGI, J. Mater. Sci. Lett. 17 (1998) 381.
H. ZHANG, Y. WANG, Y. YAN and S. LI, Ceram. Int. 29 (2003) 1.
R. A. LAUDISE, “Growth of Single Crystals” (Prentice-Hall, Inc, New Jersey, 1970).
A. ROYER, J. C. VIGUIE, M. HEUGHEBAERT and J. C. HEUGHEBAERT, J. Mater. Sci. Mater. Med. 4 (1993) 76.
N. THANGAMANI, K. CHINNAKALI and F. D. GNANAM, Ceram. Int. 28 (2002) 355.
J. CIHLAR and M. TRUNEC, Biomaterials 17 (1995) 1905.
A. J. RUYS, M. WEI, C. C. SORRELL, M. R. DICKSON, A. BRANDWOOD and B. K. MILTHROPE, Biomaterials 16 (1995) 409.
ASTM F394: Standard Test Method for Biaxial Flexure Strength of Ceramic Substrates. Philadelphia: American Society for Testing and Materials, 1991.
J. LI, S. FORBERG and L. HERMANSSON, Biomaterials 12 (1991) 438.
A. J. RUYS, N. EHSANI, S. MORICCA, B. K. MILTHORPE and C. C. SORRELL, Intern. Ceram. Monographs 2 (1996) 511.
J. FRENKEL, J. Phys. USSR. 9 (1945) 385.
G. K. LIM, J. WANG, S. C. NG and L. M. GAN, J. Mater. Chem. 9 (1999) 1635.
I. R. GIBSON, S. KE, S. M. BES and W. BONFIELD, J. Mater. Sci. Mater. Med. 12 (2001) 163.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kothapalli, C.R., Wei, M., Legeros, R.Z. et al. Influence of temperature and aging time on HA synthesized by the hydrothermal method. J Mater Sci: Mater Med 16, 441–446 (2005). https://doi.org/10.1007/s10856-005-6984-5
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10856-005-6984-5