Skip to main content
Log in

The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Leukocyte adhesion to biomaterials has long been recognised as a key element to determine their inflammatory potential. Results regarding leukocyte adhesion and activation are contradictory in some aspects of the material's effect in determining these events. It is clear that together with the wettability or hydrophilicity/hydrophobicity, the roughness of a substrate has a major effect on leukocyte adhesion. Both the chemical and physical properties of a material influence the adsorbed proteins layer which in turn determines the adhesion of cells.

In this work polymorphonuclear (PMN) cells and a mixed population of monocytes/macrophages and lymphocytes (mononuclear cells) were cultured separately with a range of starch-based materials and composites with hydroxyapatite (HA). A combination of both reflected light microscopy and scanning electron microscopy (SEM) was used in order to study the leukocyte morphology. The quantification of the enzyme lactate dehydrogenase (LDH) was used to determine the number of viable cells adhered to the polymers. Cell adhesion and activation was characterised by immunocytochemistry based on the expression of several adhesion molecules, crucial in the progress of an inflammatory response.

This work supports previous in vitro studies with PMN and monocytes/macrophages, which demonstrated that there are several properties of the materials that can influence and determine their biological response. From our study, monocytes/macrophages and lymphocytes adhere in similar amounts to more hydrophobic (SPCL) and to moderately hydrophilic (SEVA-C) surfaces and do not preferentially adhere to rougher substrates (SCA). Contrarily, more hydrophilic surfaces (SCA) induced higher PMN adhesion and lower activation. In addition, the hydroxyapatite reinforcement induces changes in cell behaviour for some materials but not for others.

The observed response to starch-based biodegradable polymers was not significantly different from the control materials. Thus, the results reported herein indicate the low potential of the starch-based biodegradable polymers to induce inflammation especially the HA reinforced composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. ANDERSON, ASAIO Trans. 34 (1988) 101.

    Article  CAS  Google Scholar 

  2. Y. T. KONTTINEN, J. W. JU, H. PATIALA, S. IMAI, V. WARIS, T. F. LI, S. B. GOODMAN, L. NORDSLETTEN and S. SANTAVIRTA, Curr. Orthop. 11 (1997) 40.

    Google Scholar 

  3. G. VOGGENREITER, S. LEITING, H. BRAUER, P. LEITING, M. MAJETSCHAK, M. BARDENHEUER and U. OBERTACKE, Biomaterials 24 (2003) 247.

    Article  CAS  Google Scholar 

  4. J. A. HUNT, K. R. ABRAMS and D. F. WILLIAMS, Anal Cell Pathol. 7 (1994) 43.

    CAS  Google Scholar 

  5. P. THOMSEN and C. GRETZER, Curr. Opin. Solid State Mater. Sci. 5 (2001) 163.

    CAS  Google Scholar 

  6. F. LIOTE, B. BOVAL-BOIZARD, D. WEILL, D. KUNTZ and J. L. WAUTIER, Clin. Exp. Immunol. 106 (1996) 13.

    Article  CAS  Google Scholar 

  7. H. PELTROCHE-LLACSAHUANGA, S. SCHMIDT, N. SCHNITZLER, R. LUTTICKEN and G. HAASE, J. Immunol Meth. 258 (2001) 13.

    Article  CAS  Google Scholar 

  8. S. M. ALBELDA and C. A. BUCK, Faseb J. 4 (1990) 2868.

    CAS  Google Scholar 

  9. M. STEWART, M. THIEL and N. HOGG, Curr. Opin. Cell. Biol. 7 (1995) 690.

    Article  CAS  Google Scholar 

  10. S. D. WRIGHT, P. E. RAO, W. C. VAN VOORHIS, L. S. CRAIGMYLE, K. LIDA, M. A. TALLE, E. F. WESTBERG, G. GOLDSTEIN and S. C. SILVERSTEIN, Proc. Natl. Acad. Sci. USA 80 (1983) 5699.

    CAS  Google Scholar 

  11. H. V. NIELSEN, J. P. CHRISTENSEN, E. C. ANDERSSON, O. MARKER and A. R. THOMSEN, J. Immunol. 153 (1994) 2021.

    CAS  Google Scholar 

  12. M. A. ARNAOUT, Blood. 75 (1990) 1037.

    CAS  Google Scholar 

  13. A. MEAGER, Cytokine Growth Factor Rev. 10 (1999) 27.

    Article  CAS  Google Scholar 

  14. L. W. POULTER, D. A. CAMPBELL, C. MUNRO and G. JANOSSY, Scand. J. Immunol. 24 (1986) 351.

    CAS  Google Scholar 

  15. F. G. GIANCOTTI and C. G. GAHMBERG, Curr. Opin. Cell. Biol. 9 (1997) 643.

    Article  Google Scholar 

  16. R. L. REIS, A. M. CUNHA and M. J. BEVIS, J. Appl. Med. Polym. 2 (1998) 49.

    CAS  Google Scholar 

  17. R. L. REIS and A. M. CUNHA, J. Appl. Med. Polym. 4 (2000).

  18. P. B. MALAFAYA, C. ELVIRA, A. GALLARDO, J. SAN ROMAN and R. L. REIS, J. Biomed. Sci. Polym. Edn. 12 (2001) 1227.

    CAS  Google Scholar 

  19. I. ESPIGARES, C. ELVIRA, J. F. MANO, B. VÁ ZQUEZ, J. SAN ROMAN and R. L. REIS, Biomaterials 23 (2002) 1883.

    Article  CAS  Google Scholar 

  20. M. E. GOMES, J. S. GODINHO, D. TCHALAMOV, A. M. CUNHA and R. L. REIS, Mat. Sci. Eng. C. 20 (2002) 19.

    Google Scholar 

  21. S. C. MENDES, R. L. REIS, Y. P. BOVELL, A. M. CUNHA, C. A. VAN BLITTERSWIJK and J. D. DE BRUIJN, Biomaterials 22 (2001) 2057.

    Article  CAS  Google Scholar 

  22. M. E. GOMES, R. L. REIS, A. M. CUNHA, C. A. BLITTERSWIJK and J. D. DE BRUIJN, Biomaterials 22 (2001) 1911.

    CAS  Google Scholar 

  23. A. P. MARQUES, R. L. REIS and J. A. HUNT, Biomaterials 23 (2002) 1471.

    Article  CAS  Google Scholar 

  24. R. L. REIS, S. C. MENDES, A. M. CUNHA and M. J. BEVIS, Polym. Int. 43 (1997) 347.

    Article  CAS  Google Scholar 

  25. P. R. KINNEARD and C. D. GRAY, in “SPSS for Windows: Made Simple” (Psychology Press, Hove, 1999).

    Google Scholar 

  26. H. NYGREN, C. ERIKSSON and J. LAUSMAA, J. Lab. Clin. Med. 129 (1997) 35.

    Article  CAS  Google Scholar 

  27. S. T. HOFFSTEIN, D. E. GENNARO and R. M. MANZI, Lab. Invest. 52 (1985) 515.

    CAS  Google Scholar 

  28. S. S. KAPLAN, R. E. BASFORD, M. H. JEONG and R. L. SIMMONS, J. Biomed. Mater. Res. 30 (1996) 67.

    Article  CAS  Google Scholar 

  29. I. GINIS and D. V. FALLER, Am. J. Physiol. 272 (1997) C295.

    CAS  Google Scholar 

  30. B. WALZOG, F. JEBLONSKI, A. ZAKRZEWICZ and P. GAEHTGENS, FASEB J. 11 (1997) 1177.

    CAS  Google Scholar 

  31. A. P. MARQUES, R. L. REIS and J. A. HUNT, J. Mater. Sci. Mater. Med. 14 (2003) 167.

    Article  CAS  Google Scholar 

  32. J. WETTERO, T. BENGTSSON and P. TENGVALL, J. Biomed. Mater. Res. 51 (2000) 742.

    CAS  Google Scholar 

  33. L. LIU, H. ELWING, A. KARLSSON, G. NIMERI and C. DAHLGREN, Clin. Exp Immunol. 109 (1997) 204.

    Article  CAS  Google Scholar 

  34. C. F. NATHAN, Blood. 73 (1989) 301.

    CAS  Google Scholar 

  35. C. NATHAN, Q. W. XIE, L. HALBWACHS-MECARELLI and W. W. JIN, J. Cell. Biol. 122 (1993) 243.

    Article  CAS  Google Scholar 

  36. C. DE LA CRUZ, B. HAIMOVICH and R. S. GRECO, J. Surg. Res. 80 (1998) 28.

    Article  CAS  Google Scholar 

  37. V. A. TEGOULIA and S. L. COOPER, J. Biomed. Mater. Res. 50 (2000) 291.

    Article  CAS  Google Scholar 

  38. F. RENÒ, F. LOMBARDI and M. CANNAS, Biomaterials 24 (2003) 2895.

    Google Scholar 

  39. C. ERIKSSON and H. NYGREN, J. Lab. Clin. Med. 137 (2001) 296.

    CAS  Google Scholar 

  40. I. PASHKULEVA, A. P. MARQUES, F. VAZ and R. L. REIS, J. Mater. Sci. Mater. Med. in press (2003).

  41. S. GESSANI, U. TESTA, B. VARANO, P. DI MARZIO, P. BORGHI, L. CONTI, T. BARBERI, E. TRITARELLI, R. MARTUCCI, D. SERIPA et al., J. Immunol. 151 (1993) 3758.

    CAS  Google Scholar 

  42. M. BENAHMED, H. BLOTTIERE, V. PRALORAN and G. DACULSI, Biomaterials 15 (1994) 25.

    Article  CAS  Google Scholar 

  43. S. F. BERNATCHEZ, M. R. ATKINSON and P. J. PARKS, ibid. 18 (1997) 1371.

    CAS  Google Scholar 

  44. T. W. BAUER, R. C. GEESINK, R. ZIMMERMAN and J. T. MCMAHON, J. Bone. Joint. Surg. Am. 73 (1991) 1439.

    CAS  Google Scholar 

  45. L. NORDSLETTEN, A. K. HOGASEN, Y. T. KONTTINEN, S. SANTAVIRTA, P. ASPENBERG and A. O. AASEN, Biomaterials 17 (1996) 1521.

    Article  CAS  Google Scholar 

  46. T. H. YOUNG, D. T. LIN and L. Y. CHEN, J. Biomed. Mater. Res. 50 (2000) 490.

    Article  CAS  Google Scholar 

  47. J. M. ANDERSON, K. DEFIFE, A. MCNALLY, T. COLLIER and C. R. JENNEY, J. Mater. Sci. Mater. Med. 10 (1999) 579.

    Article  CAS  Google Scholar 

  48. A. RICH and A. K. HARRIS, J. Cell. Sci. 50 (1981) 1.

    CAS  Google Scholar 

  49. D. W. MURRAY, T. RAE and N. RUSHTON, J. Bone. Joint. Surg. Br. 71 (1989) 632.

    CAS  Google Scholar 

  50. C. ERIKSSON, J. LAUSMAA and H.-. NYGREN, Biomaterials 22 (2001) 1987.

    Article  CAS  Google Scholar 

  51. A. P. MARQUES, I. B. LEONOR, R. L. REIS and J. HUNT, in 28th Annual Meeting of The Society for Biomaterials (Tampa, Florida, USA, 2002) p. 647.

  52. D. A. NORRIS, R. A. CLARK, L. M. SWIGART, J. C. HUFF, W. L. WESTON and S. E. HOWELL, J. Immunol. 129 (1982) 1612.

    CAS  Google Scholar 

  53. C. H. THOMAS, J. B. LHOEST, D. G. CASTNER, C. D. MCFARLAND and K. E. HEALY, J. Biomech. Eng. 121 (1999) 40.

    CAS  Google Scholar 

  54. C. R. JENNEY and J. M. ANDERSON, J. Biomed. Mater. Res. 49 (1999) 435.

    Google Scholar 

  55. C. M. ALVES, R. L. REIS and J. A. HUNT, J. Mater. Sci: Mater. Med. 14 (2003) 157.

    Article  CAS  Google Scholar 

  56. F. G. GIANCOTTI, Curr. Opin. Cell. Biol. 9 (1997) 691.

    Article  CAS  Google Scholar 

  57. N. B. VEDDER and J. M. HARLAN, J. Clin. Invest. 81 (1988) 676.

    CAS  Google Scholar 

  58. M. R. PHILIPS, J. P. BUYON, R. WINCHESTER, G. WEISSMAN and S. B. ABRAMSON, ibid. 82 (1988) 495.

    CAS  Google Scholar 

  59. M. S. DIAMOND and T. A. SPRINGER, J. Cell. Biol. 120 (1993) 545.

    CAS  Google Scholar 

  60. M. L. DUSTIN, R. ROTHLEIN, A. K. BHAN, C. A. DINARELLO and T. A. SPRINGER, J. Immunol. 137 (1986) 245.

    CAS  Google Scholar 

  61. D. F. WILLIAMS, J. Mater. Sci. 22 (1987) 3241.

    Google Scholar 

  62. B. RIHOVA, Adv. Drug. Deliver. Rev. 21 (1996) 157.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Marques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, A.P., Reis, R.L. & Hunt, J.A. The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro . J Mater Sci: Mater Med 16, 1029–1043 (2005). https://doi.org/10.1007/s10856-005-4757-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4757-9

Keywords

Navigation