Skip to main content

Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption


The steady increase in the use of medical implants and the associated rise of medical device infections has fuelled the need for the production of biomaterials with improved biocompatibility. 2-(methacryloyloxyethyl phosphorylcholine) (MPC) based coatings have been used to improve the biocompatibility of a number of different medical devices. Recent studies have investigated the use of a phosphorylcholine modified with cationic charge to encourage specific bio-interaction. Until now the affect of cationic charge incorporation in MPC copolymers on bacterial adhesion has not been investigated. This study attempts to address this by investigating the affect of charge on four different strains of bacteria commonly associated with medical device infections. In addition, the affect of pre-incubating these MPC-copolymers in heparin is also evaluated as this has previously been shown to improve biocompatibility and reduce bacterial adhesion. Bacterial adhesion was assessed by ATP bioluminescence and Scanning Electron Microscopy (SEM). Results suggest that bacterial adhesion generally increased with increasing cationic charge. When samples were however, pre-incubated with heparin a significant reduction in bacterial adhesion to the MPC-based samples was observed. The heparin remained bound and effective at reducing bacterial adhesion to the cationic MPC-based samples even after three weeks incubation in PBS. To conclude, the MPC-based cationic polymer coatings complexed with heparin may provide a promising solution to reduce medical device related infections.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. G. GRISTINA, Science 237 (1987) 1588.

    CAS  Google Scholar 

  2. 2.

    B. V. DERJAGUIN and L. LANDAU, Acta Physicochim 14 (1941) 633.

    Google Scholar 

  3. 3.

    E. J. W. VERWEY and J. T. G. OVERBECK in “Theory of the Solubility of Lyophobic Colloids” (Elsevier Publishing. Co. Amsterdam, 1948).

    Google Scholar 

  4. 4.

    MADILYN and FLETCHER in “Bacterial Adhesion, Molecular and Ecological Diversity” (Wiley-Liss: New York, 1996) p. 89.

  5. 5.

    Y. H. AN and R. J. FRIEDMAN, Journal of Biomedical Materials Research (Applied Biomaterials). 43 (1998) 338.

    CAS  Google Scholar 

  6. 6.

    M. J. ELDER, F. STAPLETON, E. EVANS and J. K. G. DART, Eye. 9 (1995) 102.

    Google Scholar 

  7. 7.

    D. J. STICKLER and R. J. C. MCLEAN, Biomaterials Associated Infections: The Scale of the Problem 5 (1995) 167.

    Google Scholar 

  8. 8.

    A. L. LEWIS in “Encyclopaedia of Biomaterials and Biomedical Engineering” (Marcel Dekker Inc., 2004) p. 1198.

  9. 9.

    D. CHAPMAN, European Patent No. 32622 (1979).

  10. 10.

    Y. KODOMA, N. NAKABAYASHI, E. MASUHARA and J. YMAUCHI, Kobunshi Ronbunshu 7 (1978) 423.

    Google Scholar 

  11. 11.

    D. CHAPMAN and S. A. CHARLES, Chemistry in Britain 3 (1992) 253.

    Google Scholar 

  12. 12.

    E. J. CAMPBELL, V. O'BYRNE, P. W. STRATFORD, T. A. VICK, M. C. WILES and Y. P. YIANNI, American Society of Artificial Internal Organs. 40 (1994) M853.

    CAS  Google Scholar 

  13. 13.

    A. L. LEWIS, Z. L. CUMMING, H. H. GOREISH, L. C. KIRKWOOD, L. A. TOLHURST and P. W. STRATFORD, Biomaterials 22 (2001) 99.

    CAS  Google Scholar 

  14. 14.

    A. W. LLOYD, S. DROPCOVA, R. G. A. FARAGHER, P. R. GARD, G. W. HANLON, S. V. MIKALOVSKY, C. J. OLLIFF, S. P. DENYER, S. P. LETKO and M. FILIPEC, Journal of Materials Science: Materials in Medicine 10 (1999) 621.

    CAS  Google Scholar 

  15. 15.

    A. W. LLOYD, R. G. A. FARAGHER, M. WASSALL, W. RHYS-WILLIAMS, L. WONG, J. E. HUGHS, G. W. HANLON, Contact Lens and Anterior Eye 23 (2000) 119.

    Article  CAS  Google Scholar 

  16. 16.

    J. YU, N. M. LAMBA, J. M. COURTNEY, T. L. WHATELEY, J. D. GAYLOR, G. D. LOWE, K. ISHIHARA and N. NAKABAYASHI, The International Journal of Artificial Organs. 17 (1995) 499.

    Google Scholar 

  17. 17.

    R. BARBUCCI and A. MAGNANI, Biomaterials 15 (1994) 955.

    Article  CAS  Google Scholar 

  18. 18.

    A. KISHIDA, H. IWATA, Y. TAMADA and Y. IKADA, ibid. 12 (1991) 786.

    Article  CAS  Google Scholar 

  19. 19.

    J. ZHENG, Y. ITO and Y. IMANISHI, ibid. 15 (1994) 963.

    Article  CAS  Google Scholar 

  20. 20.

    A. L. LEWIS, J. BERWICK, M.C. DAVIES, C. J. ROBERTS, J-H. WANG, S. SMALL, A. DUNN, V. O'BYRNE, R. P REDMAN and S. A. JONES, ibid. 15 (2004) 3099.

    Google Scholar 

  21. 21.

    S. F. ROSE, A. L. LEWIS, G. W. HANLON and A. W. LLOYD, ibid. 21 (2004) 5125.

    Google Scholar 

  22. 22.

    R. PALMER, A. LEWIS, L. C. KIRKWOOD, S. F. ROSE, A. W. LLOYD, T. A. VICK and P. W. STRATFORD, ibid. 19 (2004) 4785.

    Google Scholar 

  23. 23.

    M. R. RUGGIERI, P. M. HANNO and R. M. LEIN, J. Urol. 138 (1987) 423.

    CAS  Google Scholar 

  24. 24.

    P. TENKE, C. R. RIEDL, G. L. JONES, G. J. WILLIAMS, D. STICKLER and E. NAGY, International Journal of Antimicrobial Agents 23S1 (2004) 23S1: S67.

    Article  CAS  Google Scholar 

  25. 25.

    P. A. TAMBYAH, K. T. HALVORSON and D. G. MARKI, Mayo Clin Proc. 74 (1999) 131.

    CAS  Article  Google Scholar 

  26. 26.

    C. S. ANDREWS, S. P. DENYER, B. HALL, G. W. HANLON and A. W. LLOYD, Biomaterials 22 (2001) 3225.

    Article  CAS  Google Scholar 

  27. 27.

    A. LUDWICKA, L. M. SWITALSKI, A. LUNDIN, G. PULVERER and T. WADSTRÖM, Journal of Microbiological methods 4 (1985) 169.

    Article  CAS  Google Scholar 

  28. 28.

    A. LUNDIN, in “ATP Luminescence Rapid Methods in Microbiology” (London: Blackwell Scientific Publications, 1989) p. 11.

    Google Scholar 

  29. 29.

    B. GOTTENBOS, H. C. VAN DER MEI and H. J. BUSSCHER, J. Antimicrob Chemother 48 (2001) 7.

    Article  CAS  Google Scholar 

  30. 30.

    G. M. BRUINSMA, H. C. VAN DER MEI and H. J. BUSSCHER, Biomaterials 22 (2001) 3217.

    Article  CAS  Google Scholar 

  31. 31.

    N. SATOU, J. SATOU, H. SHINTANI and K. OKUDA, J. Gen. Microbiol. 134 (1988) 1299.

    CAS  Google Scholar 

  32. 32.

    M. C. GARCIA-SAENZ, A. ARIAS-PUENTE, M. J. FRESNADILLO-MARTINEZ and A. MATILLA-RODRIGUES, J. Cartact Refract Surg. 26 (2000) 1673.

    CAS  Google Scholar 

  33. 33.

    K. TRIANDAFILLU, D. J. BALAZS, B-O. ARONSSON, P. DESCOUTS, P. TU. QUOC, C. VAN DELDEN, H. J. MATHIEU and H. HARMS, Biomaterials 24 (2003) 1507.

    Article  CAS  Google Scholar 

  34. 34.

    G. HARKES, J. DANKERT and J. FEIJEN, J. Biomater Sci: Polym Ed. 43 (1992) 403.

    Google Scholar 

  35. 35.

    N. SCHURKS, J. WINGENDER, H.-C. FLEMMING and C. MAYER, International Journal of Biological Macromolecules 30 (2002) 105.

    CAS  Google Scholar 

  36. 36.

    S. A. MAKIN, T. J. BEVERIDGE, J. L. KADURUGAMUWA and Z. LI. FEMS, Microbiology Reviews 20 (1997) 291.

    Google Scholar 

  37. 37.

    P. APPELGREN, U. RANSJO, L. BINDSLEV, F. ESPERSEN and O. LARM, Critical Care Med. 24 (1996) 1482.

    CAS  Google Scholar 

  38. 38.

    O. LARM, L. ADOLFSSON, I. GOUDA, A. MALMBERG and P. OLSSON,Throm Haemost 58 (1987) 84.

    Google Scholar 

  39. 39.

    F. LUNDBERG, I. GOUDA, O. LARM, M. GALIN and A. LJUNGH, Biomaterials 19 (1998) 1727.

    Article  CAS  Google Scholar 

  40. 40.

    M. PORTOLES, M. F. REFOJO and F-L. LEONG, J Cataract Refract Surg. 19 (1993) 755.

    CAS  Google Scholar 

  41. 41.

    C. R. ARCIOLA, R. CARAMAZZA and A. PIZZOFERRATO, J. Cataract Refract Surf 20 (1994) 158.

    CAS  Google Scholar 

  42. 42.

    M. PAULSSON, I. GOUDA I, O. LARM and A. LJUNGH, J Biomed Mater Res. 28 (1994) 311.

    Article  CAS  Google Scholar 

  43. 43.

    S. DURMAZ and O. OAKEY, Polymer 41 (2000) 3693.

    CAS  Google Scholar 

  44. 44.

    T. L. BONFIELD, E. COLTON and J. M. ANDERSON, J Biomed Mater Res. 23 (1989) 535.

    Article  CAS  Google Scholar 

  45. 45.

    V. J. FRANKLIN, A. M. BRIGHT and B. TIGHE, Trends in Polymer Science 1 (1993) 9.

    CAS  Google Scholar 

  46. 46.

    L. TANG and J. W. EATON, The Journal of Experimental Medicine 178 (1993) 2147.

    Article  CAS  Google Scholar 

  47. 47.

    B. WESSLÉN, M. KOBER, C. FREIJ-LARSSON, A. LJUNGHI and M. PAULSSON, Biomaterials 15 (1994) 278.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. W. Lloyd.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rose, S.F., Okere, S., Hanlon, G.W. et al. Bacterial adhesion to phosphorylcholine-based polymers with varying cationic charge and the effect of heparin pre-adsorption. J Mater Sci: Mater Med 16, 1003–1015 (2005).

Download citation


  • Polymer
  • Microscopy
  • Electron Microscopy
  • Scan Electron Microscopy
  • Heparin