Skip to main content
Log in

Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HA) is important in biomedical applications because of its chemical similarity to the mineral content of bone and its consequent bioactivity. Silicon substitution into the hydroxyapatite crystal lattice was found to enhance its bioactivity both in vitro and in vivo [1, 2]. However, the mechanism for the enhancement is still not well understood. In this paper, the crystal imperfections introduced by silicon substitution were studied using XRD and Raman spectroscopy. It was found that silicon substitution did not introduce microstrain, but deceased the crystal size in the hk0 direction. Three new vibration modes and peak broadening were observed in Raman spectra following silicon incorporation. The imperfections introduced by silicon substitution may play a role in enhancing bioactivity. A phenomenological relationship between the width of the PO4 v1 peak and crystal size was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. R. GIBSON, J. HUANG, S. M. BEST and W. BONFIELD, Bioceramics 12 (1999) 191.

    CAS  Google Scholar 

  2. N. PATEL, S. M. BEST, W. BONFIELD, I. R. GIBSON, K. A. HING, E. DAMIEN and P. A. REVELL, J. Mater. Sci. Mater. Med. 13 (2002) 1199.

    Article  CAS  Google Scholar 

  3. S. WEINER and W. TRAUB, Faseb J. 6 (1992) 879.

    CAS  Google Scholar 

  4. A. E. PORTER, S. M. BEST and W. BONFIELD, Bioceramics 15 (2003) 505.

    Google Scholar 

  5. A. E. PORTER, N. PATEL, J. N. SKEPPER, S. M. BEST and W. BONFIELD, ibid. 24 (2003) 4609.

    CAS  Google Scholar 

  6. H. M. RIETVELD, Acta Crystallographica 22 (1967) 151.

    Article  CAS  ISI  Google Scholar 

  7. A. C. LARSON and R. B. V. DREELE, “General Structure Analysis System” (Los Alamos National Laboratory, 2000).

  8. G. K. WILLIAMSON and W. H. HALL, Acta Materialia 1 (1953) 22.

    CAS  Google Scholar 

  9. S. KOUTSOPOULOS, J. Biomed. Mater. Res. 62 (2002) 600.

    Article  CAS  Google Scholar 

  10. H. OU-YANG, E. P. PASCHALIS, A. L. BOSKEY and R. MENDELSOHN, Biopolymers 57 (2000) 129.

    Article  CAS  ISI  Google Scholar 

  11. I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Biom. Mater. Res. 44 (1999) 422.

    CAS  Google Scholar 

  12. I. R. GIBSON, S. M. BEST and W. BONFIELD, J. Am. Cera. Soc. 85 (2002) 2771.

    CAS  Google Scholar 

  13. P. N. DEAZA, F. GUITIAN, C. SANTOS, S. DEAZA, R. CUSCO and L. ARTUS, Chem. Mat. 9 (1997) 916.

    CAS  Google Scholar 

  14. G. PENEL, G. LEROY, C. REY and E. BRES, Calcif. Tissue Int. 63 (1998) 475.

    Article  CAS  Google Scholar 

  15. H. RICHTER, Z. P. WANG and L. LEY, Solid State Commun 39 (1981) 625.

    Article  CAS  ISI  Google Scholar 

  16. I. H. CAMPBELL and P. M. FAUCHET, ibid. 58 (1996) 739.

    Google Scholar 

  17. N. PATEL, I. R. GIBSON, K. A. HING, S. M. BEST, E. DAMIEN, P. A. REVELL and W. BONFIELD, Bioceramics 14(218–212) (2002) 383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, S., Huang, J., Best, S. et al. Crystal imperfection studies of pure and silicon substituted hydroxyapatite using Raman and XRD. J Mater Sci: Mater Med 16, 1143–1148 (2005). https://doi.org/10.1007/s10856-005-4721-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4721-8

Keywords

Navigation