Skip to main content
Log in

Fabrication of polymeric scaffolds with a controlled distribution of pores

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The design of tissue engineering scaffolds must take into account many factors including successful vascularisation and the growth of cells. Research has looked at refining scaffold architecture to promote more directed growth of tissues through well-defined anisotropy in the pore structure. In many cases it is also desirable to incorporate therapeutic ingredients, such as growth factors, into the scaffold so that their release occurs as the scaffold degrades. Therefore, scaffold fabrication techniques must be found to precisely control, not only the overall porosity of scaffolds, but also the pore size, shape and spatial distribution.

This work describes the use of a regularly shaped porogen, sugar spheres, to manufacture polymeric scaffolds. Results show that pre-assembling the spheres created scaffolds with a constant porosity of 60%, but with varying pores sizes from 200–800 μm, leading to a variation in the surface area and likely degradation rate of the scaffolds. Employing different polymer impregnation techniques tailored the number of pores present with a diameter of less than 100 μm to suit different functions, and altering the packing structure of the sugar spheres created scaffolds with novel layered porosity. Replacing sugar spheres with sugar strands formed scaffolds with pores aligned in one direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. YANG, K.-F. LEONG, Z. DU and C.-K. CHUA, Tissue Eng. 7 (2001) 679.

    Article  CAS  Google Scholar 

  2. A. VATS, N. S. TOLLEY, J. M. POLAK and J. E. GOUGH, Clin. Otolaryngol. 28 (2003) 165.

    Article  CAS  Google Scholar 

  3. A. C. JONES, B. MILTHORPE, H. AVERDUNK, A. LIMAYE, T. J. SENDEN, A. SAKELLARIOU, A. P. SHEPPARD, R. M. SOK, M. A. KNACKSTEDT, A. BRANDWOOD, D. ROHNER and D. W. HUTMACHER, Biomater. 25 (2004) 4947.

    CAS  Google Scholar 

  4. F. J. O'BRIEN, B. A. HARLEY, I. V. YANNAS and L. J. GIBSON, ibid. 26 (2005) 433.

    Google Scholar 

  5. Y. S. NAM and T. G. PARK, ibid. 20 (1999) 1783.

    Article  CAS  Google Scholar 

  6. P. R. LAITY, P. M. GLOVER, A. BARRY and J. N. HAY, Polymer 42 (2001) 7701.

    Article  CAS  ISI  Google Scholar 

  7. M. EPPLE and O. HERZBERG, J. Mater. Chem. 7 (1997) 1037.

    Article  CAS  Google Scholar 

  8. V. P. SHASTRI, I. MARTIN and R. LANGER, Proceedings of the National Academy of Sciences of the USA 97 (2000) 1970.

    Article  CAS  Google Scholar 

  9. Y. S. NAM, J. J. YOON and T. G. PARK, J. Biomed. Mater. Res. 53 (2000) 1.

    Article  CAS  Google Scholar 

  10. M. E. GOMES, A. S. RIBEIRO, P. B. MALAFAYA, R. L. REIS and A. M. CUNHA, Biomaterials 22 (2001) 883.

    CAS  ISI  Google Scholar 

  11. A. I. COOPER J. Mater. Chem. 10 (2000) 207.

    CAS  Google Scholar 

  12. S. M. HOWDLE, M. S. WATSON, M. J. WHITAKER, V. K. POPOV, M. C. DAVIES, F. S. MANDEL, J. D. WANG and K. M. SHAKESHEFF, Chemical Communications (2001) 109.

  13. L. GUAN and J. E. DAVIES, J. Biomed. Mater. Res. 71A (2004) 480.

    Article  CAS  Google Scholar 

  14. R. BUTLER, C. M. DAVIES and A. I. COOPER, Adv. Mater. 13 (2001) 1459.

    Article  CAS  Google Scholar 

  15. H. ZHANG and A. I. COOPER, Chem. Mater. 14 (2002) 4017.

    CAS  Google Scholar 

  16. J. M. TABOAS, R. D. MADDOX, P. H. KREBSBACH and S. J. HOLLISTER, Biomater. 24 (2003) 181.

    Article  CAS  Google Scholar 

  17. W.-Y. YEONG, C.-K. CHUA, K.-F. LEONG and M. CHANDRASEKARAN, Trends in Biotechnology 22 (2004) 643.

    Article  CAS  ISI  Google Scholar 

  18. V. LUGINBUEHL, L. MEINEL, H. P. MERKLE and B. GANDER, Eur. J. Pharm. Biopharm. 58 (2004) 197.

    CAS  Google Scholar 

  19. K. ZYGOURAKIS and P. A. MARKENSCOFF, Biomater. 17 (1996) 125.

    Article  CAS  Google Scholar 

  20. J. BRAUNECKER, M. BABA, G. E. MILROY and {R. E. CAMERON}, Int. J. Pharm. 282 (2004) 19.

    Article  CAS  Google Scholar 

  21. P. A. KRALCHEVSKY, N. D. DENKOV, V. N. PAUNOV, O. D. VELEV, I. B. IVANOV, H. YOSHIMURA and K. NAGAYAMA, J. Phys. Condens. Matter 6 (1994) A395.

    Article  CAS  Google Scholar 

  22. J. E. HILLIARD, in “Quantitative Microscopy”, edited by R.T. DeHoff and F.N. Rhines (McGraw Hill, 1968) p. 45.

  23. Nature 239 (1972) 488.

  24. R. FILMON, N. RETAILLEAU-GABORIT, F. GRIZON, M. GALLOYER, C. CINCU, M. F. BASLE and D. CHAPPARD, J. Biomater. Sci. Polymer Edn. 13 (2002) 1105.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capes, J.S., Ando, H.Y. & Cameron, R.E. Fabrication of polymeric scaffolds with a controlled distribution of pores. J Mater Sci: Mater Med 16, 1069–1075 (2005). https://doi.org/10.1007/s10856-005-4708-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4708-5

Keywords

Navigation