Skip to main content
Log in

Dynamic study of calcium phosphate formation on porous HA/TCP ceramics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 15 August 2008

Abstract

Bone-like apatite formation on porous calcium phosphate ceramics was investigated in static simulated body fluid (SBF) and dynamic SBF at different flowing rates. The results of a 14-day immersion in static SBF showed that the formation of bone-like apatite occurred both on the surface and in the pores of the samples. When SBF flowed at the physiological flow rate in muscle (2 ml/100 ml⋅min), bone-like apatite could be detected only in internal surface of the pores of samples. The result that bone-like apatite formation could only be found in the pores when SBF flowed at physiological flow rate was consistent with that of porous calcium phosphate ceramics implanted in vivo: osteoinduction was only detected inside the pores of the porous calcium phosphate ceramics. This result implicates that the bone-like apatite may play an important role in the osteoinduction of Ca-P materials. The dynamic model used in this study may be better than usually used static immersion model in imitating the physiological condition of bone-like apatite formation. Dynamic SBF method is very useful to understand bone-like apatite formation in vivo and the mechanism of ectopic bone formation in calcium phosphate ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. ZHANG, W. CHEN, Y. LI, C. KLEIN and K. DE GROOT, in “Trans of 19th Annual Meeting of the SOCIETY FOR BIOMATERIALS” (Birmingham, AL, USA. 1993) 299.

  2. C. KLEIN, K. DE GROOT, J. ZHOU, Y. LI and X. ZHANG, in “Trans of Fourth World Biomaterials Congress” (Berlin, Germany, 1992) 261.

  3. M. HEUGHEBEART, R. Z. LEGEROS, M. GINEST and G. BONEL, J. Biomed. Mater. Res. (Appl. Biomater.) 22 (1988) 257.

    Article  Google Scholar 

  4. U. RIPAMONTI, in “CRC Handbook Ceramics” (Boca Raton, FL, CRC Press, 1990) 245.

    Google Scholar 

  5. X. ZHANG, H. YUAN and K. DE GROOT, in “Notebook: Workshop1#, Biomaterials With Intrinsic Osteoinductivity. The 6th World Biomaterials Congress” (Hawaii, USA, 2000).

  6. J. D. DE BRUIJN, H. YUAN, R. DEKKER, P. LAYROLLE, K. DE GROOT and VAN C. A. BLITTERSWIJK, in “Bone Engineering” (Toronto, Canada, em Squared Incorporated 2000) 421.

    Google Scholar 

  7. T. KOKUBO, Mater. Sci. Foru. 293 (1999) 65.

    Google Scholar 

  8. H. M. KIM, H. TAKADAMA, F. MIYAJI, T. KOKUBO, S. NISHIGUCHI and T. NAKAMURA, J. Mater. Sc.: Mater Med. 11 (2000) 555.

    Article  Google Scholar 

  9. T. KASUGA, Y. HOSOI, M. NOGAMI and M. NIINOMI, J. Amer. Ceram. Soc. 84 (2001) 450.

    Google Scholar 

  10. J. M. BOULER and G. DACULSI, Key Engng. Mater. 192–195 (2001) 119.

  11. Z. L. TAO, in “Biohydrodynamics” (Beijing, Science Publisher, 1984) (in Chinese).

    Google Scholar 

  12. Y. LENG, J. Y. CHEN and S. X. QU, Biomaterials 24 (2003) 2125.

    Article  PubMed  Google Scholar 

  13. X. H. WU, in “Physiological Data of Human Body” (Beijing, Science Popularization Publisher, 1987) 68 (in Chinese).

  14. T. KOKUBO, S. ITO and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 331.

    Article  PubMed  Google Scholar 

  15. W. Q. CHEN, S. X. QU, Z. J.YANG, X. D.ZHANG and M. Q.YUAN, Key Eng. Mater. 115 (1996) 233.

    Google Scholar 

  16. I. V. MARKOV, in “Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy” (Singapore, World Scientific Publishing Co. Pte. Ltd, 1995) 62.

  17. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI and N. SOGA, J. Am. Ceram. Soc. 75 (1992) 2094.

    Article  Google Scholar 

  18. R. M. KOWALCHUK, S. R. POLLACK, P. DUCHEYNE and L. A. KING, J. Biomed. Mater. Res. 27 (1993) 783.

    Article  PubMed  Google Scholar 

  19. S. A. MEZZASALMA, J. Colloid Inter. Sci. 190 (1997) 302.

    Article  Google Scholar 

  20. U. RIPAMONTI, in “Bone Engineering” (Tornto, Canada, em sqared incorporated, 2000) 215.

    Google Scholar 

  21. U. RIPAMONTI, Matrix 13 (1993) 491.

    PubMed  Google Scholar 

  22. C. KLEIN, K. DE GROOT, W. Q. CHEN, Y. B. LI and X. D. ZHANG, Biomaterials 35 (1994) 31.

    Article  Google Scholar 

  23. T. NAKAMURA, M. NEO and T. KOKUBO, in “Mineralization in Natural and Synthetic Biomaterials” (Materials Research Society, Warrendale, Pennsylvania, 2000) 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Chen.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10856-008-3532-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y.R., Zhang, Z.R., Wang, C.Y. et al. Dynamic study of calcium phosphate formation on porous HA/TCP ceramics. J Mater Sci: Mater Med 16, 795–801 (2005). https://doi.org/10.1007/s10856-005-3577-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-3577-2

Keywords

Navigation