Abstract
Due to their attractive mechanical properties, bioinert zirconia bioceramics are frequently used in the high load-bearing sites such as orthopaedic and dental implants, but they are chemically inert and do not naturally form a direct bond with bone and thus do not provide osseointegration. A CO2 laser was used to modify the surface properties with the aim to achieve osseointegration between bioinert zirconia and bone. The surface characterisation revealed that the surface roughness decreased and solidified microstructure occurred after laser treatment. Higher wettability characteristics generated by the CO2 laser treatment was primarily due to the enhancement of the surface energy, particularly the polar component, determined by microstructural changes. An in vitro test using human fetal osteoblast cells (hFOB) revealed that osteoblast cells adhere better on the laser treated sample than the untreated sample. The change in the wettability characteristics could be the main mechanism governing the osteoblast cell adhesion on the YPSZ.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
P. S. CHRISTEL, Bull. Hosp. Joint Diseas. Orthop. Inst. 49 (1989) 170.
J. LI and G. W. HASTINGS, “Oxide Bioceramics: Inert Ceramic Materials in Medicine and Dentistry,” Chapman & Hall: London, New York (1998) p. 340.
M. FINI, N. NICOLI ALDINI, M. G. GANDOLFI, M. MATTIOLI BELMONTE, G. GIAVARESI, C. ZUCCHINI, A. DE BENEDITTIS, S. AMATI, A. RAVAGLIOLI and E. T. KRAYEWSKI, Inter. J. Artif. Org. 20 (1997) 291.
T. J. WEBSTER, R. W. SIEGEL and R. BIZIOS, Biomaterials 20 (1999) 1221.
D. A. PULEO and R. BIZIOS, J. Biomed. Mater. Res. 26 (1992) 291.
H. MIRZADEH, A. A. KATBAB and R. P. BURFORD, Rad. Phy. Chem. 46 (1995) 859.
H. MIRZADEH, A. A. KATBAB, M. T. KHORASANI, R. P. BURFORD, E. GORGIN and A. GOLESTANI, Biomaterials 16 (1995) 641.
M. DADSETAN, H. MIRZADEH, N. SHARIFI-SANJANI and M. DALIRI, J. Biomed. Mater. Res. 57 (2001) 183.
L. HAO and J. LAWRENCE, J. Phys. D. 36 (2003) 1292.
L. HAO and J. LAWRENCE, Colloids Surf. B: Biointerf. 34 (2004) 87.
L. HAO and J. LAWRENCE, J. Biomed. Mater. Res. 69A (2004) 748.
L. HAO and J. LAWRENCE, Mate. Sci. Engng. C 23 (2003) 627.
L. HAO, J. LAWRENCE and K. S. CHIAN, J. Biomater. Appl. 19 (2004) 81.
N. K. ADAM and G. E. P. ELLIOTT, J. Chem. Soc. 18 (1958) 2206.
F. M. FOWKES, Ind. Eng. Chem. 56 (1964) 40.
J. R. DANN, J. Colloid Interf. Sci. 32 (1970) 302.
S. AGATHOPOULOS and P. NIKOLOPOULOS, J. Biomed. Mater. Res. 29 (1995) 421.
J. LAWRENCE and L. LI, J. Phys. D 32 (1999) 1075.
J. LAWRENCE, L. LI and J. T. SPENCER, Appl. Surf. Sci. 138/139 (1999) 388.
Y. T. PEI, J. H. OUYANG and T. C. LEI, Surf. Coat. Techn. 81 (1996) 131.
Z. LIU, “Surface Modification of Materials Using High Power Lasers and An Arc Image Intensifier,” PhD Thesis, University of Liverpool, 1991.
L. HAO and J. LAWRENCE, in Proceedings of the IMechE Part B, J. Eng. Manufacture. (2004) vol. 218.
R. W. MCCALLUM, M. J. KRAMER and S. T. WEIR, IEEE Trans. Appl. Supercond. 3 (1993) 1147.
R. N. WENZEL, Ind. Eng. Chem. 28 (1936) 988.
T. UELZEN and J. MULLER, Thin Solid Films 434 (2003) 311.
J. LAWRENCE, Proc. Royal Soc. London, Series A 458 (2002) 2445.
L. HAO and J. LAWRENCE, Mater. Sci. Engng. A. 364 (2003) 171.
Idem., J. Laser Appl. Submitted for publication (2003).
A. W. NEUMANN, Adv. Colloid Interf. Sci. 4 (1974) 106.
D. K. CHATTORAJ and K. S. BIRDI, “Adsorption and the Gibbs Surface Excess” (Plenum Press: New York, 1984) p. 95.
X. M. ZHANG, T. M. YUE and H. C. MAN, Mater. Lett. 30 (1997) 327.
B. FENG, J. WENG, B. C. YANG, S. X. QU and X. D. ZHANG, Biomaterials 24 (2003) 4663.
H. OHGUSHI, Y. DOHI, T. YOSHIKAWA, S. TAMAI, S. TABATA, K. OKUNAGA and T. SHIBUYA, J. Biomed. Mater. Res. 32 (1996) 341.
D. D. DELIGIANNI, N. D. KATSALA, P. G. KOUTSOUKOS and Y. F. MISSIRLIS. Biomaterials 22 (2001) 87.
M. AHMAD, D. GAWRONSKI, J. BLUM, J. GOLDBERG and G. GRONOWICZ, J. Biomed. Mater. Res. 46 (1999) 121.
B. KASEMO and J. GOLD, Adv. Dent. Res. 13 (1999) 8.
B. CHEHROUDI, J.-L. QU and D. M. BRUNETTE, “Effects of Implant Surface Topography on Osteogenesis,” in: Proceedings of the 5th World Biomaterials Congress, May 29-Jun 2 1996 (Toronto, Canada, 1996).
H. MIRZADEH and M. DADSETAN, Radiation Phys. Chem. 67 (2003) 381.
J. M. SCHAKENRAAD, H. J. BUSSCHER, C. R. H. WILDEVUUR and J. ARNDS, J. Biomed. Mater. Res. 20 (1986) 773.
S. A. REDEY, M. NARDIN, D. BERNACHE-ASSOLANT, C. REY, P. DELANNOY, L. SEDEL and P. J. MARIE, J. Biomed. Mater. Res. 50 (2000) 353.
C. A. SCOTCHFORD, E. COOPER, G. J. LEGGETT and S. DOWNES, ibid. 41 (1998) 431.
R. L. PRICE, M. C. WAID, K. M. HABERSTROH and T. J. WEBSTER, Biomaterials 24 (2003) 1877.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hao, L., Lawrence, J. & Chian, K.S. Osteoblast cell adhesion on a laser modified zirconia based bioceramic. J Mater Sci: Mater Med 16, 719–726 (2005). https://doi.org/10.1007/s10856-005-2608-3
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10856-005-2608-3