Skip to main content
Log in

Osteoblast cell adhesion on a laser modified zirconia based bioceramic

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Due to their attractive mechanical properties, bioinert zirconia bioceramics are frequently used in the high load-bearing sites such as orthopaedic and dental implants, but they are chemically inert and do not naturally form a direct bond with bone and thus do not provide osseointegration. A CO2 laser was used to modify the surface properties with the aim to achieve osseointegration between bioinert zirconia and bone. The surface characterisation revealed that the surface roughness decreased and solidified microstructure occurred after laser treatment. Higher wettability characteristics generated by the CO2 laser treatment was primarily due to the enhancement of the surface energy, particularly the polar component, determined by microstructural changes. An in vitro test using human fetal osteoblast cells (hFOB) revealed that osteoblast cells adhere better on the laser treated sample than the untreated sample. The change in the wettability characteristics could be the main mechanism governing the osteoblast cell adhesion on the YPSZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. P. S. CHRISTEL, Bull. Hosp. Joint Diseas. Orthop. Inst. 49 (1989) 170.

    CAS  Google Scholar 

  2. J. LI and G. W. HASTINGS, “Oxide Bioceramics: Inert Ceramic Materials in Medicine and Dentistry,” Chapman & Hall: London, New York (1998) p. 340.

    Google Scholar 

  3. M. FINI, N. NICOLI ALDINI, M. G. GANDOLFI, M. MATTIOLI BELMONTE, G. GIAVARESI, C. ZUCCHINI, A. DE BENEDITTIS, S. AMATI, A. RAVAGLIOLI and E. T. KRAYEWSKI, Inter. J. Artif. Org. 20 (1997) 291.

    CAS  Google Scholar 

  4. T. J. WEBSTER, R. W. SIEGEL and R. BIZIOS, Biomaterials 20 (1999) 1221.

    Article  CAS  PubMed  Google Scholar 

  5. D. A. PULEO and R. BIZIOS, J. Biomed. Mater. Res. 26 (1992) 291.

    Article  CAS  PubMed  Google Scholar 

  6. H. MIRZADEH, A. A. KATBAB and R. P. BURFORD, Rad. Phy. Chem. 46 (1995) 859.

    Article  CAS  Google Scholar 

  7. H. MIRZADEH, A. A. KATBAB, M. T. KHORASANI, R. P. BURFORD, E. GORGIN and A. GOLESTANI, Biomaterials 16 (1995) 641.

    Article  CAS  PubMed  Google Scholar 

  8. M. DADSETAN, H. MIRZADEH, N. SHARIFI-SANJANI and M. DALIRI, J. Biomed. Mater. Res. 57 (2001) 183.

    Article  CAS  PubMed  Google Scholar 

  9. L. HAO and J. LAWRENCE, J. Phys. D. 36 (2003) 1292.

    Article  CAS  Google Scholar 

  10. L. HAO and J. LAWRENCE, Colloids Surf. B: Biointerf. 34 (2004) 87.

    Article  CAS  Google Scholar 

  11. L. HAO and J. LAWRENCE, J. Biomed. Mater. Res. 69A (2004) 748.

    Article  CAS  Google Scholar 

  12. L. HAO and J. LAWRENCE, Mate. Sci. Engng. C 23 (2003) 627.

    Article  Google Scholar 

  13. L. HAO, J. LAWRENCE and K. S. CHIAN, J. Biomater. Appl. 19 (2004) 81.

    Article  CAS  PubMed  Google Scholar 

  14. N. K. ADAM and G. E. P. ELLIOTT, J. Chem. Soc. 18 (1958) 2206.

    Google Scholar 

  15. F. M. FOWKES, Ind. Eng. Chem. 56 (1964) 40.

    Article  CAS  Google Scholar 

  16. J. R. DANN, J. Colloid Interf. Sci. 32 (1970) 302.

    Article  CAS  Google Scholar 

  17. S. AGATHOPOULOS and P. NIKOLOPOULOS, J. Biomed. Mater. Res. 29 (1995) 421.

    Article  CAS  PubMed  Google Scholar 

  18. J. LAWRENCE and L. LI, J. Phys. D 32 (1999) 1075.

    Article  CAS  Google Scholar 

  19. J. LAWRENCE, L. LI and J. T. SPENCER, Appl. Surf. Sci. 138/139 (1999) 388.

    Article  Google Scholar 

  20. Y. T. PEI, J. H. OUYANG and T. C. LEI, Surf. Coat. Techn. 81 (1996) 131.

    Article  CAS  Google Scholar 

  21. Z. LIU, “Surface Modification of Materials Using High Power Lasers and An Arc Image Intensifier,” PhD Thesis, University of Liverpool, 1991.

  22. L. HAO and J. LAWRENCE, in Proceedings of the IMechE Part B, J. Eng. Manufacture. (2004) vol. 218.

  23. R. W. MCCALLUM, M. J. KRAMER and S. T. WEIR, IEEE Trans. Appl. Supercond. 3 (1993) 1147.

    Article  Google Scholar 

  24. R. N. WENZEL, Ind. Eng. Chem. 28 (1936) 988.

    Article  CAS  Google Scholar 

  25. T. UELZEN and J. MULLER, Thin Solid Films 434 (2003) 311.

    Article  CAS  Google Scholar 

  26. J. LAWRENCE, Proc. Royal Soc. London, Series A 458 (2002) 2445.

  27. L. HAO and J. LAWRENCE, Mater. Sci. Engng. A. 364 (2003) 171.

    Article  Google Scholar 

  28. Idem., J. Laser Appl. Submitted for publication (2003).

  29. A. W. NEUMANN, Adv. Colloid Interf. Sci. 4 (1974) 106.

    Google Scholar 

  30. D. K. CHATTORAJ and K. S. BIRDI, “Adsorption and the Gibbs Surface Excess” (Plenum Press: New York, 1984) p. 95.

    Google Scholar 

  31. X. M. ZHANG, T. M. YUE and H. C. MAN, Mater. Lett. 30 (1997) 327.

    Article  CAS  Google Scholar 

  32. B. FENG, J. WENG, B. C. YANG, S. X. QU and X. D. ZHANG, Biomaterials 24 (2003) 4663.

    Article  CAS  PubMed  Google Scholar 

  33. H. OHGUSHI, Y. DOHI, T. YOSHIKAWA, S. TAMAI, S. TABATA, K. OKUNAGA and T. SHIBUYA, J. Biomed. Mater. Res. 32 (1996) 341.

    Article  CAS  PubMed  Google Scholar 

  34. D. D. DELIGIANNI, N. D. KATSALA, P. G. KOUTSOUKOS and Y. F. MISSIRLIS. Biomaterials 22 (2001) 87.

    CAS  PubMed  Google Scholar 

  35. M. AHMAD, D. GAWRONSKI, J. BLUM, J. GOLDBERG and G. GRONOWICZ, J. Biomed. Mater. Res. 46 (1999) 121.

    Article  CAS  PubMed  Google Scholar 

  36. B. KASEMO and J. GOLD, Adv. Dent. Res. 13 (1999) 8.

    CAS  PubMed  Google Scholar 

  37. B. CHEHROUDI, J.-L. QU and D. M. BRUNETTE, “Effects of Implant Surface Topography on Osteogenesis,” in: Proceedings of the 5th World Biomaterials Congress, May 29-Jun 2 1996 (Toronto, Canada, 1996).

  38. H. MIRZADEH and M. DADSETAN, Radiation Phys. Chem. 67 (2003) 381.

    Article  CAS  Google Scholar 

  39. J. M. SCHAKENRAAD, H. J. BUSSCHER, C. R. H. WILDEVUUR and J. ARNDS, J. Biomed. Mater. Res. 20 (1986) 773.

    Article  CAS  PubMed  Google Scholar 

  40. S. A. REDEY, M. NARDIN, D. BERNACHE-ASSOLANT, C. REY, P. DELANNOY, L. SEDEL and P. J. MARIE, J. Biomed. Mater. Res. 50 (2000) 353.

    Article  CAS  PubMed  Google Scholar 

  41. C. A. SCOTCHFORD, E. COOPER, G. J. LEGGETT and S. DOWNES, ibid. 41 (1998) 431.

    Article  CAS  PubMed  Google Scholar 

  42. R. L. PRICE, M. C. WAID, K. M. HABERSTROH and T. J. WEBSTER, Biomaterials 24 (2003) 1877.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, L., Lawrence, J. & Chian, K.S. Osteoblast cell adhesion on a laser modified zirconia based bioceramic. J Mater Sci: Mater Med 16, 719–726 (2005). https://doi.org/10.1007/s10856-005-2608-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-2608-3

Keywords

Navigation