Skip to main content
Log in

ZnMoO4/g-C3N4 S-scheme heterojunction photocatalyst: synthesis, structural, optical, and its photocatalytic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Utilizing a single-step hydrothermal method, we prepared both pure ZnMoO4 and ZnMoO4/g-C3N4 composite, showcasing distinctive electronic and structural features that render it promising for environmental and energy remediation applications. XRD analysis confirmed the successful formation of ZnMoO4/g-C3N4 composites. The FESEM image of g-C3N4 displayed stacked flat sheets with noticeable wrinkles, showcasing its two-dimensional structure and irregular pores, enhancing its unique characteristics. Pure ZnMoO4 exhibited self-growth into hexagonal plate structures, with additional decoration of g-C3N4 sheets on its surface. UV–Vis absorption spectra analysis confirmed the interlayer structure of g-C3N4 and ZnMoO4 in the heterojunction, leading to a considerable increase in UV absorption and enhanced charge-separation efficiency within the binary ZnMoO4/g-C3N4 heterostructure. The photocatalytic activity of the synthesized ZnMoO4 and ZnMoO4/g-C3N4 nanocomposites was evaluated through the degradation of methylene blue (MB) dye under UV light irradiation. The results indicated that ZnMoO4 surface decorated with g-C3N4 sheets significantly influenced photocatalysis. Moreover, an increase in the nanocomposite composition led to enhanced efficiency in the photocatalytic process, with the incorporation of carbon nitride on zinc molybdates resulting in a threefold increase in photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. M. Umar, H.A. Aziz, Photocatalytic degradation of organic pollutants in water. Org. Pollut.-Monit., Risk Treat. 8, 196–197 (2013)

    Google Scholar 

  2. N. Talebian, S.M. Amininezhad, M. Doudi, Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J. Photochem. Photobiol. B. 120, 66–73 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. L. Hong, R. Guo, Y. Yuan, X. Ji, Z. Lin, Z. Li, W. Pan, Recent progress of transition metal phosphides for photocatalytic hydrogen evolution. Chem. Sus. Chem. 14, 539–557 (2021)

    Article  CAS  Google Scholar 

  4. S. Mishra, Acharya R photocatalytic applications of graphene/ based semiconductor composites: a review. Mater. Today Proc. 35, 164–169 (2021)

    Article  CAS  Google Scholar 

  5. K. Bramhaiah, V.N. Singh, N.S. John, Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: enhanced photodegradation rates in relation to their composition and morphology. Phys. Chem. Chem. Phys. 18, 1478–1486 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. S. Imoto, K. Nakagawa, C. Hu, T. Yoshioka, T. Shintani, A. Matsuoka, E. Kamio, T. Tachikawa, S.C.E. Tsang, H. Matsuyama, HNb3O8/g-C3N4 nanosheet composite membranes with two-dimensional heterostructured nanochannels achieve enhanced water permeance and photocatalytic activity. Chem. Eng. J. 442, 136254 (2022)

    Article  CAS  Google Scholar 

  7. A. Ali, A. Dutta, Transition metal chalcogenide–based photocatalysts for small-molecule activation. In Photocatalytic Systems by Design, pp. 297–331 (2020). https://doi.org/10.1016/B978-0-12-820532-7.00017-5

  8. R. Shah, S. Ali, S. Ali, P. Xia, F. Raziq, F. Mabood, S. Shah, A. Zada, P.M. Ismail, A. Hayat, A.U. Rehman, Amino functionalized metal–organic framework/rGO composite electrode for flexible Li-ion batteries. J. Alloy. Compd. 936, 168183 (2023)

    Article  CAS  Google Scholar 

  9. R. Shah, S. Ali, F. Raziq, S. Ali, P.M. Ismail, S. Shah, R. Iqbal, X. Wu, W. He, X. Zu, A. Zada, Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coord. Chem. Rev. 477, 214968 (2023)

    Article  CAS  Google Scholar 

  10. J. Zhang, X. Mao, W. Xiao, Y. Zhuang, Photocatalytic degradation of sulfamethazine by graphitic carbon nitride-modified zinc molybdate: effects of synthesis method on performance, degradation kinetics, and mechanism. Chin. J. Catal. 38, 2009–2020 (2017)

    Article  CAS  Google Scholar 

  11. V.B. Mikhailik, H. Kraus, V. Kapustyanyk, M. Panasyuk, Y. Prots, V. Tsybulskyi, L. Vasylechko, Structure, luminescence and scintillation properties of the MgWO4–MgMoO4 system. J. Phys. Condens. Matter 20, 365219 (2008)

    Article  Google Scholar 

  12. X. Ding, M. Li, P. Chen, Y. Zhao, M. Zhao, H. Leng, Y. Wang, S. Ali, F. Raziq, X. Wu, H. Xiao, Bi2O2Se: a rising star for semiconductor devices. Matter 5, 4274–4314 (2022)

    Article  CAS  Google Scholar 

  13. Y.R. Jiang, W.W. Lee, K.T. Chen, M.C. Wang, K.H. Chang, C.C. Chen, Hydrothermal synthesis of β-ZnMoO4 crystals and their photocatalytic degradation of victoria blue R and phenol. J. Taiwan Inst. Chem. Eng. 45, 207–218 (2014)

    Article  CAS  Google Scholar 

  14. Y. Keereeta, T. Thongtem, S. Thongtem, Effect of medium solvent ratios on morphologies and optical properties of α-ZnMoO4, β-ZnMoO4 and ZnMoO4 0.8 H2O crystals synthesized by microwave-hydrothermal/solvothermal method. Superlattices Microstruct. 69, 253–264 (2014)

    Article  CAS  Google Scholar 

  15. X. Li, Y. Qiu, Z. Zhu, H. Zhang, D. Yin, Novel recyclable Z-scheme g-C3N4/carbon nanotubes/Bi25FeO40 heterostructure with enhanced visible-light photocatalytic performance towards tetracycline degradation. Chem. Eng. J. 429, 132130 (2022)

    Article  CAS  Google Scholar 

  16. M.R. Mohamed, Magnetic properties of nanocrystalline magnesium ferrite by co-precipitation assisted with ultrasound irradiation. J. Mater. Sci. 42, 5248–5255 (2007)

    Article  Google Scholar 

  17. M. Sivakumar, T. Takami, H. Ikuta, A. Towata, K. Yasui, T. Tuziuti, T. Kozuka, D. Bhattacharya, Y. Iida, Fabrication of zinc ferrite nanocrystals by sonochemical emulsification and evaporation: observation of magnetization and its relaxation at low temperature. J. Phys. Chem. B 110, 15234–15243 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. B.P. Jacob, A. Kumar, R.P. Pant, S. Singh, E.M. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles. Bull. Mater. Sci. 34, 1345–1350 (2011)

    Article  CAS  Google Scholar 

  19. R. Marko, M. Drofenik, Hydrothermal synthesis of manganese zinc ferrites. J. Am. Ceram. Soc. 78, 2449–2455 (1995)

    Article  Google Scholar 

  20. S. Zahi, A.R. Daud, M. Hashim, A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106, 452–456 (2007)

    Article  CAS  Google Scholar 

  21. S.K. Pradhan, S. Bid, M. Gateshki, V. Petkov, Microstructure characterization and cationdistribution of nanocrystalline magnesium ferrite prepared by ball milling. Mater. Chem. Phys. 93, 224–230 (2005)

    Article  CAS  Google Scholar 

  22. R. Belakehal, K. Atacan, N. Güy, A. Megriche, M. Özacar, Fabrication of heterostructured CdS/g-C3N4/ZnFe2O4 nanocomposite synthesized through ultrasonic-assisted method for efficient photocatalytic hydrogen production. Appl. Surf. Sci. 602, 154315 (2022)

    Article  CAS  Google Scholar 

  23. C. Mallikarjunaswamy, P. Parameswara, S. Pramila, G. Nagaraju, H.N. Deepakumari, V. Lakshmi Ranganatha, Green and facile synthesis of zinc oxide nanoparticles for enhanced photocatalytic organic pollutant degradation. J. Mater. Sci. Mater. Electron. 33, 20361–20372 (2022)

    Article  CAS  Google Scholar 

  24. C. Mallikarjunaswamy, S. Pramila, G. Nagaraju, V. Lakshmi Ranganatha, Enhanced photocatalytic, electrochemical and antimicrobial activities of Α-Mn2V2O7 nanopebbles. J. Mater. Sci. Mater. Electron. 33, 617–634 (2022)

    Article  CAS  Google Scholar 

  25. S. Pramila, V.L. Ranganatha, T.L. Soundarya, R. Ramu, G. Nagaraju, C. Mallikarjunaswamy, Eco-mediated synthesis of visible active Bi2WO6 nanoparticles and its performance towards photocatalyst, supercapacitor, biosensor, and antioxidant activity. J. Clus. Sci. 33, 2233–2248 (2022)

    Article  CAS  Google Scholar 

  26. C. Mallikarjunaswamy, V. Lakshmi Ranganatha, R. Ramu, G. Nagaraju, Udayabhanu, Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J. Mater. Sci. Mater. Electron. 31, 1004–1021 (2020)

    Article  CAS  Google Scholar 

  27. C. Mallikarjunaswamy, S. Pramila, G.S. Shivaganga, H.N. Deepakumari, R. Prakruthi, G. Nagaraju, P. Parameswara, V.L. Ranganatha, Facile synthesis of multifunctional bismuth oxychloride nanoparticles for photocatalysis and antimicrobial test. Mater. Sci. Eng. B 290, 116323 (2023)

    Article  CAS  Google Scholar 

  28. L. Wang, Y. Hou, S. Xiao, F. Bi, L. Zhao, Y. Li, X. Zhang, G. Gai, X. Dong, One-step, high-yield synthesis of g-C3N4 nanosheets for enhanced visible light photocatalytic activity. RSC Adv. 9, 39304–39314 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. S. Fang, K. Lv, Q. Li, H. Ye, D. Du, M. Li, Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4. Appl. Surf. Sci. 358, 336–342 (2015)

    Article  CAS  Google Scholar 

  30. M. Saravanan, T.S. Girisun, S.V. Rao, Super-paramagnetic and unusual nonlinear absorption switching behavior of an in situ decorated CdFe2O4–rGO nanocomposite. J. Mater. Chem. C 5, 9929–9942 (2017)

    Article  CAS  Google Scholar 

  31. D. Aman, S. Abdel-Azim, S. Said, S.G. Mohamed, Facile synthesis of ZnMoO4/AlPO4–5 nanorod composites as visible-light-driven photocatalysts and high-performance energy storage materials. RSC Adv. 12, 7120–7132 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Q.T.H. Ta, G. Namgung, J.S. Noh, Facile synthesis of porous metal-doped ZnO/g-C3N4 composites for highly efficient photocatalysts. J. Photochem. Photobiol. A 368, 110–119 (2019)

    Article  CAS  Google Scholar 

  33. V. Kavinkumar, A. Verma, K. Jothivenkatachalam, Y.P. Fu, Dual-functional CuO-decorated Bi3.84W0.16O6.24/Bi2WO6 nanohybrids for enhanced electrochemical hydrogen evolution reaction and photocatalytic Cr (VI) reduction performance. ACS Appl. Nano Mater. 6, 2985–2994 (2023)

    Article  CAS  Google Scholar 

  34. H. Yu, J. Huang, L. Jiang, L. Leng, K. Yi, W. Zhang, C. Zhang, X. Yuan, In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction. Appl. Catal. B Environ. 298, 120618 (2021)

    Article  CAS  Google Scholar 

  35. L. Wang, B. Zhu, J. Zhang, J.B. Ghasemi, M. Mousavi, J. Yu, S-scheme heterojunction photocatalysts for CO2 reduction. Matter 7, 4187–4211 (2022)

    Article  Google Scholar 

  36. L. Zhang, J. Zhang, H. Yu, J. Yu, Emerging S-scheme photocatalyst. Adv. Mater. 34, 2107668 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. Saravanan is thankful to University Grants Commission (UGC), India for providing Dr. D.S. Kothari Post Doctoral Fellow (No.F.4-2/2006 (BSR)/PH/20-21/0074).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V. Subapriya: methodology, writing, editing and supervision. D. Karthickeyan: methodology and writing. M. Saravanan: data curation and writing. R. Janani: visualization and investigation. K. Venkatachalam: editing and supervision.

Corresponding author

Correspondence to V. Subapriya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66,500 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subapriya, V., Karthickeyan, D., Saravanan, M. et al. ZnMoO4/g-C3N4 S-scheme heterojunction photocatalyst: synthesis, structural, optical, and its photocatalytic properties. J Mater Sci: Mater Electron 35, 1437 (2024). https://doi.org/10.1007/s10854-024-13150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13150-x

Navigation