Skip to main content
Log in

Exploring the enhanced mechanical and magnetic properties of nickel-doped magnesium oxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, MgO nanoparticles (MNPs) and Ni-doped MgO nanoparticles (NiMNPs) were synthesized using the sol–gel method. The impact of Ni concentration on the morpho-structural, mechanical, and magnetic properties of the fabricated nanoparticles was systematically investigated. Characterization techniques including X-ray Diffraction (XRD) was employed for both MNPs and NiMNPs. XRD analysis was revealed that the synthesized samples at 600 °C exhibited a pure, single cubic phase of MNPs and also absorbed in NiMNPs. In addition to this, lattice strain (LS) and dislocation density (DD) values were calculated for further supporting the findings. As we were increasing the Ni-doping concentration (1% to 7%), the crystallite size (CS) was decreasing from 21 to 13 nm (Debye–Scherrer method) and from 23 nm to 14 nm (Hall–Williamson method), indicating a correlation between Ni concentration and structural characteristics. The mechanical and magnetic properties of the synthesized nanoparticles were thoroughly examined in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Comini, Metal oxide nanowires: preparation and application in gas sensing. J. Mol. Catal. A Chem. 305, 170–177 (2009). https://doi.org/10.1016/j.molcata.2009.01.009

    Article  CAS  Google Scholar 

  2. G. Hassnain Jafari et al., Study of surface-active modes and defects in single-phase Li-incorporated MgO nanoparticles. J. Phys. Chem. C 119, 28182–28189 (2015). https://doi.org/10.1021/acs.jpcc.5b10131

    Article  CAS  Google Scholar 

  3. L.-Z. Pei et al., Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process. Mater. Res. 13, 339–343 (2010). https://doi.org/10.1590/S1516-14392010000300010

    Article  CAS  Google Scholar 

  4. F. Al-Hazmi et al., A new large—scale synthesis of magnesium oxide nanowires: structural and antibacterial properties. Superlattices Microstruct. 52, 200–209 (2012). https://doi.org/10.1016/j.spmi.2012.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. H. Kim et al., Metal-organic framework-derived MgO/Mg(OH)2@nanoporous carbon for high thermal energy release. ACS Appl. Nano Mater. 3, 2207–2213 (2021). https://doi.org/10.1021/acsanm.9b02291

    Article  CAS  Google Scholar 

  6. J. Jeevanandam, Y.-S. Chan, M.-K. Danquah, Efect of pH variations on morphological transformation of biosynthesized MgO nanoparticles. Par. Sci. Tech. 38, 1–19 (2019). https://doi.org/10.1080/02726351.2019.1566938

    Article  CAS  Google Scholar 

  7. M.M. Obeid, S.J. Edrees, M.M. Shukur, Synthesis and characterization of pure and cobalt doped magnesium oxide nanoparticles: insight from experimental and theoretical investigation. Superlattices Microstruct. 122, 124–139 (2018). https://doi.org/10.1016/j.spmi.2018.08.015

    Article  CAS  Google Scholar 

  8. C. Dong et al., Antibacterial study of Mg(OH)2nanoplatelets. Mater. Res. Bull. 46, 576–582 (2011). https://doi.org/10.1016/j.materresbull.2010.12.023

    Article  CAS  Google Scholar 

  9. E. Esmaeili, A. Khodadadi, Y. Mortazavi, Microwave-induced combustion process variables for MgO nanoparticle synthesis using polyethylene glycol and sorbitol. J. Eur. Ceram. Soc. 29, 1061–1068 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.051

    Article  CAS  Google Scholar 

  10. H. Sieber, D. Hesse, X. Pan, S. Senz, J. Heydenreich, TEM investigations of spinel-forming solid state reactions: Reaction mechanism, flm orientation, and interface structure during MgAl2O4 formation on MgO (001) and Al2O3 (1.12) single crystal substrates. Z. fur Anorg. Allgem. Chem. 622, 1658–1666 (1996). https://doi.org/10.1002/ZAAC.19966221007

    Article  CAS  Google Scholar 

  11. K.-V. Rao, C.-S. Sunandana, Structure and microstructure of combustion synthesized MgO nanoparticles and nanocrystalline MgO thin flms synthesized by solution growth route. J. Mater. Sci. 43, 146–154 (2008). https://doi.org/10.1007/s10853-007-2131-7

    Article  CAS  Google Scholar 

  12. T.H.-Y. Duong et al., Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. J. Chem. 2019, 1–9 (2019). https://doi.org/10.1155/2019/4376429

    Article  CAS  Google Scholar 

  13. A. Sternig et al., Phase separation at the nanoscale: Structural properties of BaO segregates on MgO-based nanoparticles. J. Phys. Chem. C 115, 15853–15861 (2011). https://doi.org/10.1021/jp204043g

    Article  CAS  Google Scholar 

  14. S. Yousefi, B. Ghasemi, M. Tajally, A. Asghari, Optical properties of MgO and Mg(OH)2 nanostructures synthesized by a chemical precipitation method using impure brine. J. Alloy. Compd. 711, 521–529 (2017). https://doi.org/10.1016/j.jallcom.2017.04.036

    Article  CAS  Google Scholar 

  15. S. Krishnan et al., Aminotetrazole-functionalized SiO2 coated MgO nanoparticle composites for removal of acid fuchsin dye and detection of heavy metal ions. ACS Appl. Nano Mater. 3, 11203–11216 (2020). https://doi.org/10.1021/acsanm.0c02351

    Article  CAS  Google Scholar 

  16. L. Chen, P. Bai, W. Li, Preparation of a novel magnesium oxide nanoflm of honeycomb-like structure and investigation of its properties. Chem. Eng. J. 303, 588–595 (2016). https://doi.org/10.1016/j.cej.2016.06.037

    Article  CAS  Google Scholar 

  17. D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, I.H. Shewael, G.H. Valiev, E. Kianfar, Nanomaterial by Sol-Gel method: synthesis and application. Adv. Mater. Sci. Eng. 2021, 5102014 (2021). https://doi.org/10.1155/2021/5102014

    Article  CAS  Google Scholar 

  18. M. Anchana, E. Komathi, S. Oviya, V. Sabari, Synthesis and characterization studies of pure MgO by Sol-Gel method. Int. J. Adv. Res. Sci. Commun. Technol. 12, 22–26 (2021). https://doi.org/10.48175/IJARSCT-2344

    Article  Google Scholar 

  19. S. Abinaya, H.-P. Kavitha, Magnesium oxide nanoparticles: effective antilarvicidal and antibacterial agents. ACS Omega 8, 5225–5233 (2023). https://doi.org/10.1021/acsomega.2c01450

    Article  CAS  Google Scholar 

  20. K.D. Salman, H.-H. Abbas, H.A. Aljawad, Synthesis and characterization of MgO nanoparticle via microwave and sol-gel methods. J. Phys. Conf. Ser. 1973, 012104 (2021). https://doi.org/10.1088/1742-6596/1973/1/012104

    Article  CAS  Google Scholar 

  21. R. Bhargava, S. Khan, Superior dielectric properties and bandgap modulation in hydrothermally grown Gr/MgO nanocomposite. Phys. Lett. A 383, 1671–1676 (2019). https://doi.org/10.1016/j.physleta.2019.02.030

    Article  CAS  Google Scholar 

  22. S. Bhuvaneshwari, S. Satheeskumar, J. Velayutham, B.S. Rahman, Hydrothermal synthesis and characterization of ZnO, MgO and ZnO/MgO nanocomposites. Rasayan J. Chem. 14, 1581–1586 (2021). https://doi.org/10.31788/RJC.2021.1436022

    Article  CAS  Google Scholar 

  23. N.M.-A. Hadia, H.A.-H. Mohamed, Characteristics and optical properties of MgO nanowires synthesized by solvothermal method. Mater. Sci. Semicond. Process. 29, 238–244 (2015). https://doi.org/10.1016/j.mssp.2014.03.049

    Article  CAS  Google Scholar 

  24. Y. Kado, Y. Soneda, Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous Mesoporous Mater. 310, 110646 (2021). https://doi.org/10.1016/j.micromeso.2020.110646

    Article  CAS  Google Scholar 

  25. X. Zhao, G. Ji, W. Liu, X. He, E.J. Anthony, M. Zhao, Calcium-looping based energy conversion and storage for carbon neutrality –the way forward. Chem. Eng. J. 332, 216–226 (2018). https://doi.org/10.1007/s43979-022-00034-4

    Article  CAS  Google Scholar 

  26. L.G. Possato, R.G.-L. Gonçalves, R.M.-M. Santos, T.-F. Chaves, V. Briois, S.-H. Pulcinelli, L. Martins, V.-V. Santilli, Sol-gel synthesis of nanocrystalline MgO and its application as support in Ni/MgO catalysts for ethanol steam reforming. Appl. Surf. Sci. 542, 148744 (2021). https://doi.org/10.1016/j.apsusc.2020.148744

    Article  CAS  Google Scholar 

  27. T.H.-Y. Duong, T.-N. Nguyen, H.-T. Oanh, T.-A. Dang Thi, L.H.-T. Giang, H.-T. Phuong, N.-T. Anh, B.-M. Nguyen, V. Tran Quang, G.-T. Le, Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. J. Chem. 2019, 4376429 (2019). https://doi.org/10.1155/2019/4376429

    Article  CAS  Google Scholar 

  28. R. Hazarika, B. Kalita, Effect of oxygen vacancy defects on electronic and optical properties of MgO monolayers: first principles study. Mater. Sci. Eng. B 286, 115974 (2022). https://doi.org/10.1016/j.mseb.2022.115974

    Article  CAS  Google Scholar 

  29. R. Vijaya Shanthi, R. Kayalvizhi, M. John Abel, K. Neyvasagam, Analysis on the combined effect of Gd3+ and Er3+ lanthanides in the microscopic, physicochemical and photocatalytic characteristics of MgO nanoparticles. Opt. Mater. 125, 112118 (2022). https://doi.org/10.1016/j.optmat.2022.112118

    Article  CAS  Google Scholar 

  30. L.-Z. Pei, W.-Y. Yin, J.-F. Wang, J. Chen, C.-G. Fan, Q.-F. Zhang, Low temperature synthesis of magnesium oxide and spinel. Mater. Res. 13, 443–451 (2010). https://doi.org/10.1590/S1516-14392010000300010

    Article  Google Scholar 

  31. R. Verma, K.-K. Naik, J. Gangwar, A.-K. Srivastava, Morphology, mechanism and optical properties of nanometer-sized MgO. Mater. Chem. Phys. 148(3), 1064–1070 (2014). https://doi.org/10.1016/j.matchemphys.2014.09.018

    Article  CAS  Google Scholar 

  32. M. Zielinski, B. Czajka, M. Pietrowski, I. Tomska-Foralewska, E. Alwin, M. Kot, M. Wojciechowska, MgO-MgF2 system obtained by sol-gel method as an immobilizing agent of the electrolyte applied in the high temperature cells. J. Sol-Gel Sci. Technol. 84, 368–374 (2017). https://doi.org/10.1007/s10971-017-4495-8

    Article  CAS  Google Scholar 

  33. L. Tondon et al., Comparative study of MgO nanopowders prepared by different chemical methods. Gels 9(8), 624 (2023). https://doi.org/10.3390/gels9080624

    Article  CAS  Google Scholar 

  34. X. Du et al., Piezo-phototronic efect promoted carrier separation in coaxial p-n junctions for self-powered photodetector. Nano Energy 92, 106694 (2022). https://doi.org/10.1016/j.nanoen.2021.106694

    Article  CAS  Google Scholar 

  35. A. Almontasser, A. ParveenProbing, Probing the effect of Ni, Co and Fe doping concentrations on the antibacterial behaviors of MgO nanoparticles. Sci. Rep. (nature port polio) 12, 7922 (2022). https://doi.org/10.1038/s41598-022-12081-z

    Article  CAS  Google Scholar 

  36. A. Almontasser, A. Parveen, Synthesis and characterization of indium oxide nanoparticles. Int. Conf. Condens. Matter Appl. Phys. 2220, 020191 (2019). https://doi.org/10.1063/5.0001683

    Article  CAS  Google Scholar 

  37. N. Gopi Krishna, E. Purushotham, Effect of lattice strain on the Debye-Waller factors of Mg, Zn, and Cd. Indian J. Phys. 84(7), 887–893 (2010). https://doi.org/10.1007/s12648-010-0058-3

    Article  Google Scholar 

  38. E. Purushotham, N. Gopi Krishna, Preparation and charecterisation of silver nano particles. Indian J. Phys. 87(8), 982–987 (2013). https://doi.org/10.1007/s12648-013-0396-z

    Article  CAS  Google Scholar 

  39. E. Purushotham, “Mechanical and thermal properties of strained metal nanoparticles prepared by ball milling method.” Rasayan J. Chem. 13(4), 1676–1680 (2020)

    Google Scholar 

  40. E. Purushotham, Preparation and characterization of zinc nanoparticles: ball milling and Hall-Williamson method. Mater Today: Proceed 47(15), 5391–5394 (2021). https://doi.org/10.1016/j.matpr.2021.03.556

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author express his gratitude to the NIT Warngal, Telangana, India, for permitting to undertake the reported investigations. The author is grateful to the management of SR University, Warangal, India, for support and encouragement during this work.

Funding

The authors declare that they have no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purushotham Endla.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

Not applicable.

Research data policy statement

We adhere to a policy of making data available upon reasonable request. The datasets generated during and/or analyzed during the current study are available from the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endla, P. Exploring the enhanced mechanical and magnetic properties of nickel-doped magnesium oxide nanoparticles. J Mater Sci: Mater Electron 35, 1105 (2024). https://doi.org/10.1007/s10854-024-12872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12872-2

Navigation